<u>Curriculum Topic</u> : Electrostatic Fields

ESF4 : Gauss's Law in Differential Form

Module Outline:	
Prerequisite Skills	<u>Competencies</u>
Supplemental Reading and Resources	Assessments
Power Point Slides and Notes	

Prerequisite Skills

*Prerequisites / Requirements:***ESF3** Gauss's Law in Integral Form

Competencies

Competency ESF.4:	Apply Gauss's Law in differential form to electrostatic
	problems.

Competency Builders:

- ESF.4.1 Understand the geometrical meaning of divergence
- ESF.4.2 Write the divergence theorem in mathematical form
- ESF.4.3 Calculate charge from an arbitrary field distribution in space

Supplemental Reading and Resources

Supplemental Reading Materials:

Prof. Andrew Peterson's Lecture Notes (Fields and Waves Lecture 7)

All materials ©2009 Prof. Gregory D. Durgin

Assessments

The following questions and exercises may serve as either pre-assessment or postassessment tests to evaluate student knowledge.

 Question: ESF.4.1
 Competency: ESF.4.1

 If a vector field appears to be emanating from a small region in space, then the divergence of the vector field at that region in space is likely _____.

 Answer:

 positive

Question: ESF.4.2

Competency: ESF.4.2

Explain why you cannot take the divergence of a vector in spherical coordinates by straight-summing the partial derivatives of each component:

Wrong:
$$\nabla \cdot \vec{D} = \frac{\partial D_{\rho}}{\partial \rho} + \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_{\theta}}{\partial \theta}$$

Answer:

Operators in Other Coordinate Systems: In the spherical coordinate system, the unit vectors used to decompose the field components change direction as a function of observation point. The gradient, curl, and divergence formulas differ from their simpler Cartesian operators (since the Cartesian unit vectors do not change orientation depending on observation point).

Question: ESF.4.3

Competency: ESF.4.3

Electrostatic Charge Distributions: All of the field distributions in this problem are free-space and may be written in the following form:

 $\vec{E}(r,\phi,\theta) = E_r(r)\hat{r}$

Make a rough sketch in the graph provided of $E_r(r)$ for the following charge distributions.

