<u>Curriculum Topic</u> : Time-Domain Transmission Lines

TDT2 : Transmission Line Equations

Module Outline:		
Prerequisite Skills	Competencies	
Supplemental Reading and Resources	Assessments	
Laboratory Activities	Power Point Slides and Notes	

Prerequisite Skills

Prerequisites / Requirements:
TDT1 Introduction to Transmission Lines

Competencies

Competency TDT.2:	Link the physical attributes of a transmission line to the
	properties of electrical signals that they transport

Competency Builders:

- TDT.2.1 Recognize the telegrapher's equations
- TDT.2.2 Understand the relationship between a transmission line's per-unit-length capacitance and inductance, velocity of propagation, and intrinsic impedance
- TDT.2.3 Identify several basic and common topologies for transmission lines
- TDT.2.4 Calculate electrical parameters from the geometry and material properties of common transmission line types

Supplemental Reading and Resources

Supplemental Reading Materials:

A.F. Peterson and G.D. Durgin. *Transient Signals on Transmission Lines: An Introduction to the Non-Ideal Effects and Signal Integrity Issues in Electrical Systems*. Morgan & Claypool Publishers, 2009. Chapter 2.

Assessments

The following questions and exercises may serve as either pre-assessment or postassessment tests to evaluate student knowledge.

Question: TDT2.1	Competency: TDT.2.1
The electric	was the first application of transmission line theory.
Answer:	
Telegraph	

Question: TDT2.2	Competency: TDT.2.2	
Signals on a 75 Ω transmission line propagate at a velocity of 2 x 10 ⁸ m/s. What are the		
per-unit-length capacitance and inductance of this line?		
Answer:		
66.7 pF/m and 375 nH/m		

Question: TDT2.3	Competency: TDT.2.3
a) b) c) Identify the name we use for each of the tall lustrated below (dark is metal, gray is diele	d)e) ransmission line cross section geometries il- ectric):
a)	
	d)
b)	
c)	e)

Answer:

a) co-planar strip, b) microstrip, c) symmetrical stripline, d) coaxial cable, e) parallel plate

School of Electrical and Computer Engineering, Georgia Institute of Technology

Question: TDT2.4

Competency: TDT.2.4

You are asked to design a 100 Ω microstrip transmission line that will be etched onto a dielectric substrate with $\varepsilon_r = 3.0$ and a thickness of 4 mm. What should be the width of the microstrip line?

Answer:

The easiest way to calculate the width of the microstrip is to use the inversion formula in the notes:

$$a = b \left[\frac{8 \exp(A)}{\exp(2A) - 2} \right]$$

where

$$A = \frac{Z_0}{60} \sqrt{\frac{\epsilon_r + 1}{2}} + \frac{\epsilon_r - 1}{\epsilon_r + 1} \left(0.23 + \frac{0.11}{\epsilon_r} \right)$$
$$B = \frac{377\pi}{2Z_0\sqrt{\epsilon_r}}$$

When these expressions are evaluated for the parameters discussed in the problem statement, the results are A = 2.49, B = 3.42, and a = 2.7 mm.

Question: TDT2.5

Competency: TDT.2.4

You are asked to design a coaxial cable with 50Ω impedance. The cable must have an outer conductor radius of 1 cm and a solid inner copper core of radius a. You must choose a dielectric permittivity ϵ_r and a conductor core radius a that achieves the desired impedance while minimizing the cost-per-meter of the coaxial cable. Copper conductor costs \$5000 per cubic meter and the dielectric plastic costs $(150 + 25\epsilon_r)$ per cubic meter (higher permittivity dielectrics are more expensive). In addition to ϵ_r and a, calculate the material cost-per-foot of your optimum coaxial cable as well as the velocity of propagation, the inductance, and the capacitance.

Hint: It is probably easiest to plot cost vs. ϵ_r and find the optimal design parameters by visual inspection.

Answer:

First, from geometry we know that the volumes of copper and dielectric (per unit length of cable) are given by the following expressions:

Cu vol/m: $a^2\pi$ Dielectric vol/m: $(b^2 - a^2)\pi$

The value b is fixed at 0.01m. The per-unit cost of each medium is given by:

Cu: $5000a^2\pi$ \$/m Dielectric: $(150 + 25\epsilon_r)(b^2 - a^2)\pi$ \$/m

(Note: there would also be some outer conductor coating, but this is a fixed cost since the cable radius is static.)

We also know that a will be a function of the dielectric permittivity ϵ_r . We must invert the coaxial equation from the notes:

$$Z_0 = \frac{\ln\left(\frac{b}{a}\right)}{2\pi}\sqrt{\frac{\mu}{\epsilon}} \quad \longrightarrow \quad a = b \exp\left(-2\pi Z_0 \sqrt{\frac{\epsilon_r \epsilon_0}{\mu_0}}\right)$$

This expression allows us to calculate the inner conductor radius as a function of permittivity (unknown) and target impedance (known). Thus, to compute the total cost of the dielectric and copper core, we can construct the following expressions through substitution:

Cu Cost:
$$5000\pi \left[0.01 \exp\left(-2\pi (50)\sqrt{\frac{\epsilon_r \epsilon_0}{\mu_0}}\right) \right]^2$$

Dl Cost: $(150 + 25\epsilon_r)\pi \left((0.01)^2 - \left[0.01 \exp\left(-2\pi (50)\sqrt{\frac{\epsilon_r \epsilon_0}{\mu_0}}\right) \right]^2 \right)$

The total cost of the dielectric and copper core is the sum of these two values. Now let's plot total cost as a function of dielectric parameter ϵ_r along with the inner core radius:

School of Electrical and Computer Engineering, Georgia Institute of Technology

School of Electrical and Computer Engineering, Georgia Institute of Technology