Curriculum Topic :

Time-Domain Transmission Lines

TDT5 : Cascades and Fan-Outs

Module Outline:	
Prerequisite Skills	Competencies
Supplemental Reading and Resources	$\underline{\text { Assessments }}$
Laboratory Activities	$\underline{\text { Power Point Slides and Notes }}$

Prerequisite Skills

Prerequisites / Requirements:
TDT4 Termination Schemes

Competencies

Competency TDT.5: Calculate reflections and track signals when more than one transmission line is in a circuit network.

Competency Builders:
TDT.5.1 Calculate the reflection coefficient at the junction of cascaded transmission lines.
TDT.5.2 Calculate the reflection coefficient at the junction of a transmission line fan-out.
TDT.5.3 Track signal flow in a circuit with multiple transmission lines.

Supplemental Reading and Resources

Supplemental Reading Materials:
A.F. Peterson and G.D. Durgin. Transient Signals on Transmission Lines: An Introduction to the Non-Ideal Effects and Signal Integrity Issues in Electrical Systems. Morgan \& Claypool Publishers, 2009. Chapter 5.

Assessments

The following questions and exercises may serve as either pre-assessment or postassessment tests to evaluate student knowledge.

Question: TDT5.1

Competency: TDT.5.1
Three transmission lines are cascaded together, the first one with impedance Z_{0}, the second with impedance Z_{1}, and the third with impedance Z_{2}. What is the impedance of the middle section Z_{1} in terms of the other two impedances that maximizes the amplitude of the initial voltage of a DC pulse traveling on the last transmission line segment?
Answer:
When the pulse hits the junction of lines 1 and 2 , it transmits with coefficient τ_{01} into line 2 . When the pulse hits the junction of lines 2 and 3 , it transmits with coefficient τ_{12} into line 3 . Mathematically, these transmission coefficients are

$$
\tau_{01}=\frac{2 Z_{1}}{Z_{0}+Z_{1}} \quad \tau_{12}=\frac{2 Z_{2}}{Z_{1}+Z_{2}}
$$

To figure out the maximum voltage, we maximize the product $\tau_{01} \tau_{12}$ with respect to Z_{1}. The value of impedance that maximizes the voltage amplitude is

$$
Z_{1}=\sqrt{Z_{0} Z_{2}}
$$

Question: TDT5.2

Competency: TDT.5.2

If a source transmission line with impedance 100Ω is connected in parallel to 4 electrically identical lines, what should be their impedances to minimize reflections at the junction? If the 4 lines are connected in series fan-out, what should their impedances be?
Answer:
$400 \Omega, 25 \Omega$

Question: TDT5.3
Competency: TDT.5.3
Two mismatched transmission lines are cascaded together with a switched DC-source and resistive load that are also mismatched. If the transit time of the first line is 1.2 ns and the transit time of the second line is .5 ns , write down the first 12 times that you will see voltage changes at the output if the DC switch is turned on at $\mathrm{t}=0$.
Answer:

```
Key: 1-2-2 is shorthand for a signal with leading edge that travels down transmission line
1 ( \(\mathrm{T}_{1}\) transit time), then transmission line 2 (back and forth for \(+2 \mathrm{~T}_{2}\) transit time), and
finally down transmission line 1 again to the load ( \(+\mathrm{T}_{2}\) transit time).
Total Transit Time =
1.7 ns (1-2),
2.7 ns (1-2-2),
3.7 ns (1-2-2-2),
4.1 ns (1-1-2),
4.7 ns (1-2-2-2-2),
5.1 ns (1-2-1-2 and 1-1-2-2),
5.7 ns (1-2-2-2-2-2),
6.1 ns (1-1-2-2-2 and 1-2-1-2-2),
6.7 ns (1-2-2-2-2-2-2),
7.1 ns (1-1-2-2-2-2 and 1-2-1-2-2-2),
7.5 ns (1-2-1-1-2),
7.7 ns (1-2-2-2-2-2-2-2)
```

