<u>Curriculum Topic</u> : Time-Domain Transmission Lines

TDT6 : Initially Charged Transmission Lines

Module Outline:	
Prerequisite Skills	Competencies
Supplemental Reading and Resources	Assessments
Laboratory Activities	Power Point Slides and Notes

Prerequisite Skills

Prerequisites / Requirements: **TDT5** Termination Schemes

Competencies

Competency TDT.6: Analyze the transient behavior of a charged transmission line

Competency Builders:

- TDT.6.1 Calculate the voltages and currents on a DC-charged line with a switched source.
- TDT.6.2 Calculate the initial transient and steady states of charged transmission lines in more complicated resistive networks.

Supplemental Reading and Resources

Supplemental Reading Materials:

A.F. Peterson and G.D. Durgin. *Transient Signals on Transmission Lines: An Introduction to the Non-Ideal Effects and Signal Integrity Issues in Electrical Systems*. Morgan & Claypool Publishers, 2009. Chapter 6.

Assessments

The following questions and exercises may serve as either pre-assessment or postassessment tests to evaluate student knowledge.

Question: TDT6.1

Competency: TDT.6.1

An open-circuited 200- Ω transmission line is energized to 6 V DC across the load terminal. What is the total load output voltage and backward-propagating voltage (as measured at the end of the line) immediately after an 80- Ω resistor is switched into the load terminals?

Answer:

Under steady-state DC excitation, there is a +3V waveform traveling both in the forward and backwards directions. When the 80- Ω resistor is switched into the load, the reflection coefficient changes from +1 to -3/7. This means that the total output voltage will become +1.71 V and the backward propagating voltage will become -1.29 V immediately after the switch is thrown.

Question: TDT6.2

Competency: TDT.6.2

T-line Sequence Problem: Below is a transmission line circuit. Fill out the state table for V^+ as the circuit is sequentially switched under the following conditions. Note: V^+ is measured at the *start* of the transmission line. Assume ideal circuit components. (22 points)

	V^+	Condition
State 0		Both switches are open and the t-line is discharged
State 1		Immediately after switch A is closed
State 2		Switch A has been closed for a while
State 3		Immediately after switch A is opened
State 4		Switch A has been open for a while
State 5		Immediately after switch B is closed
State 6		Switch B has been closed for a while
State 7		Immediately after switch A is closed
State 8		Switch A has been closed for a while
State 9		Immediately after switch B is opened
State 10		Switch B has been opened for a while

Answer:

All materials ©2009-present Prof. Gregory D. Durgin

School of Electrical and Computer Engineering, Georgia Institute of Technology

State 0 0 V; system is uncharged.

- State 1 4 V; a forward and a backward-traveling wave of 4 V are launched simultaneously from both ends of the line.
- State 2 6 V; steady-state circuit shows effectively an open circuit voltage of 12 V and both ends and no current flowing into or out of the line. $V^+ = (V_L + I_L Z_0)/2 = 6$ V, which is also V^- .
- State 3 6 V; the system is in equilibrium, current still does not (cannot) flow between transmission line ports.
- State 4 6 V; this state persists as there is no resistor to discharge across, no connection from top plate to bottom. Looks like a parallel plate capacitor.
- State 5–2 V; there is now a load voltage of 8 V and a current $I_L = 4/Z_0$ flowing across the terminals of both sides of the transmission line. On the load side, $V^+ = (V_L + I_L Z_0)/2 = 6$ V and $V^- = (V_L I_L Z_0)/2 = 2$ V. This behavior is mirrored on the source side, except V^+ and V^- are flipped.
- State 6 0 V; completely discharged.
- State 7 3 V; we can use the discharged model for the transmission line. A forward and a backward-traveling wave of 3 V are launched simultaneously from both ends of the line.
- State 8 3 V; the forward and backward propagating waves are identical at steady-state and must add up to 6 V.
- State 9 5 V; there is a total of 8 V across both ends of the line and a current of $-2/Z_0$ flowing across both the terminals of the line. On the load side, $V^+ = (V_L + I_L Z_0)/2 = 3$ V and $V^- = (V_L I_L Z_0)/2 = 5$ V. This behavior is mirrored on the source side, except V^+ and V^- are flipped.

State 10 4 V; identical to state 2.

The equivalent circuits used for this problem are shown below:

School of Electrical and Computer Engineering, Georgia Institute of Technology

School of Electrical and Computer Engineering, Georgia Institute of Technology

All materials ©2009-present Prof. Gregory D. Durgin

School of Electrical and Computer Engineering, Georgia Institute of Technology

Discharge of a Long Capacitor: This problem is identical to the homework problem, only now the long, skinny capacitor is mismatched to the finger, with a reflection coefficient of $\Gamma_L = 0.9$. As such, it will take a lot longer than 2T to discharge because a diminishing voltage waveform will continue to circulate around the line, gradually stepping down the total load voltage:

All materials ©2009-present Prof. Gregory D. Durgin

School of Electrical and Computer Engineering, Georgia Institute of Technology

- (c) The graphs in part (a) will resemble the graph in part (b) if either of the following conditions are met: the capacitor is relatively short (small T) or the line is much more capacitive than inductive (small Z_0). Either of these conditions will cause the steps in part (a) to appear small and/or drawn out in time, so that it will simply look like a granular version of exponential decay.
- (d) (Bonus +5 Points): This was a tough one, but a great conceptual exercise to recognize that the RC-characteristic you studied in circuits class is, under certain conditions, the same solution that we study in this class! The lumped parameter RC circuit discharges with the following characteristic for $t \geq 0$:

$$V(t) = V_0 \exp\left(-\frac{t}{R_L C'}\right) = V_0 \exp\left(-\frac{t}{R_L C D}\right)$$

where C' is the total capacitance, which is related to the per-unit-length capacitance, C (C' = CD). In the transmission line model, there is a geometrically step-decaying solution which can be expressed as

$$V(t) = V_0/2 \underbrace{\left(1 + \frac{R_L - Z_0}{R_L + Z_0}\right)}_{\tau_L} \underbrace{\left(\frac{R_L - Z_0}{R_L + Z_0}\right)}_{\Gamma_L} \underbrace{\left(\frac{R_L - Z_0}{R_L + Z_0}\right)}_{\Gamma_L}$$

where $\lfloor \cdot \rfloor$ denotes the floor (round down) operation, ensuring that another reflection coefficient is added to the expression every 2T to achieve that stair-stepped decay. If the skinny capacitor has a small transmit time, then we can approximate this voltage as

$$V(t) \approx V_0 / 2 \left(1 + \frac{R_L - Z_0}{R_L + Z_0} \right) \left(\frac{R_L - Z_0}{R_L + Z_0} \right)^{\frac{t}{2DZ_0C}}$$

which takes use of the relationship $T = D\sqrt{LC} = DZ_0C$. Now, if the line is much more capacitive than inductive, $Z_0 = \sqrt{\frac{L}{C}}$ becomes very small. Let's take that limit:

$$V(t) \approx V_0/2 \underbrace{\left(1 + \frac{R_L - Z_0}{R_L + Z_0}\right)}_{\lim_{Z_0 \to 0} = 2} \left[\underbrace{\left(\frac{R_L - Z_0}{R_L + Z_0}\right)^{\frac{1}{Z_0}}}_{\lim_{Z_0 \to 0} = \exp\left(-\frac{2}{R_L}\right)}\right]^{\frac{t}{Z_{DC}}} \approx V_0 \exp\left(-\frac{t}{R_L DC}\right)$$

It's our original RC-constant solution for a lumped-sum capacitor! Under conditions of small Z_0 and/or small T, these graphs would look identical on an oscilloscope!

Question: TDT6.4

- State 0: Both switches are open and both lines are uncharged.
- State 1: Immediately after switch A is closed onto the DC source.
- State 2: Switch A has been closed for a while.
- State 3: Immediately after switch B is closed.
- State 4: Switch B has been closed for a while.
- State 5: Immediately after Switch B re-opens.

Fill out the following table according to these switching states. Unsimplified fractional answers are OK. Assume all backwards propagating waves are measured from the right-most side of the transmission line. Assume all forward propagating waves are measured from the left-most side of the transmission line. (44 points):

	V_1	V_X	V_Y	V_1^+	V_1^-
State 0	0	0	0	0	0
State 1		0	0		0
State 2					
State 3					
State 4					
State 5					

Answer:

	V_1	V_X	V_Y	V_1^+	V_1^-
State 0	0	0	0	0	0
State 1	12	0	0	12	0
State 2	24	6	0	15	9
State 3	24	10	-8	15	5
State 4	18	9	0	27/2	9/2
State 5	18	9/2	9/2	27/2	9