ECE 3025: Electromagnetics SOLUTIONS TO TEST 1 (Fall 2003)

(1) Short Answer Section

- (a) false remember that we are studying *lossless* transmission lines.
- (b) nonlinear
- (c) dispersion
- (d) crosstalk
- (e) $\frac{1-N}{N+1}$, since parallel fanout load is $\frac{Z_0}{N}$
- (f) $\frac{N-1}{N+1}$, since series fanout load is NZ_0
- (g) 1, -1, 0 Note: I didn't take off points for missing the short circuit since I called it a *closed* circuit on the test, which may have been ambiguous.
- (h) 1 second
- (i) $\frac{Z_0}{v_p}$
- (j) true

(2) **Descriptive Answer Section** (21 points)

- (a) There are two problems apparent from the graph: 1) the line is mismatched, which causes reflections and 2) the pulses are distorted by some reactance in the circuit probably parasitic capacitance.
- (b) Write the forward-propagating voltage waveform: $60 \cos(1000t 5z)$
 - Write the backward-propagating current waveform: $2\pi u \left(2t + \frac{z}{100} + 12\right)$
 - The characteristic impedance for this line is 60 Ω .
 - The velocity of propagation for this line is 200 m/s.
 - What is the total voltage at t = 0 at the front of the line (z = 0)? $60 120\pi$ V

(3) **Reflection Sketches** (15 points)

Explanation on the grading: If you sketched reflections using the wrong excitation (i.e. a DC voltage instead of a impulse), it was -3 points per graph. If you sketched reflections

using the wrong excitation and you did it incorrectly, it was -5 points per graph.

a. The voltage observed at the transmission line load:

b. The voltage observed at the transmission line source:

c. The voltage observed exactly halfway down the transmission line:

(4) Switching Network (40 points)

	V_A	V_B	V_L	V_X	V_Y
State 0	0	0	0	0	0
State 1	3	0	0	0	0
State 2	12	12	0	0	0
State 3	12	6	0	6	0
State 4	6	6	2	2	2