
ECE 3025: Electromagnetics

Solutions to TEST 3 (Fall 2005)

(1) Laplace’s Equation:

(a) We know from symmetry that the voltage will not depend on z or ρ. Thus, applying
Laplace’s equations:

∇2V (ρ, φ, z) =
1

ρ2

∂2V

∂φ2
= 0

First, multiply through by ρ2 to get the simplified partial-differential equation:

∂2V

∂φ2
= 0

Integrate this twice to produce the general solution:

V (φ) = C1 + C2φ

Enforce boundary conditions to solve for the constants C1 and C2:

V (0) = C1 = 0V V (φ) = C2π = V0

Thus the final solution may be written as

V (ρ, φ, z) =
V0|φ|

π

Note that, due to the symmetry of the problem, V (φ) = V (−φ); thus, the solution we
sketched out in 0 ≤ φ ≤ π is valid on the other side of the xz-plane as well.

(b) Recognize that ~E = −∇V (φ). The only difficulty in the problem is to make sure we
use the gradient formula for the cylindrical coordinate system. For 0 ≤ φ ≤ π:

~E(ρ) = −
1

ρ

∂Vφ

∂φ
φ̂ = −

V0

ρπ
φ̂

Again, since the solution reflects about the xz-axis, we may write:

~E(ρ, φ, z) =

{
− V0

ρπ
φ̂ 0 < φ < π

V0

ρπ
φ̂ −π < φ < 0

or ~E(ρ, φ, z) =
2V0

ρπ

[
1

2
− u(φ)

]

φ̂

(c) To find charge from an electric field distribution, we apply Gauss’s law in differential

form: ∇ · ~D = ρv. Note that the divergence formula in cylindrical coordinates predicts
that

∇ · (ǫ ~E) = ǫ
1

ρ

∂Eφ

∂φ
= 0

for 0 < φ < π. Does this make sense? Yes, because there is no charge in the space
(according to Laplace’s equations). The only charge in space exists as a surface charge
on the two plates. The full solution is easiest to obtain by using the expression provided
you in the previous problem:

ρv = ǫ
1

ρ

∂Eφ

∂φ
=

ǫ

ρ

∂

∂φ

{
2V0

ρπ

[
1

2
− u(φ)

]}

= −
2ǫV0

πρ2
δ(φ)

If you got to this point, you received full credit. Note, however that ρv(~r) = ρs(ρ, z) δ(φ)
ρ

,

which is how to translate a volume charge into a surface charge. Thus, the surface charge
on each sheet is

ρs = ±
2ǫV0

πρ
1



2

The positive density is on the 100V plate and the negative density is on the 0V plate.
Note that the test formula ρv(~r) = ρs(ρ, z)δ(φ) had a typo in it (no ρ in the denom-
inator). Of course, anyone who omitted the ρ was still given full credit (not that it
mattered at that point in the problem).

(d) Bonus Challenge: No one got this. Here is the procedure, for those interested. First,
note that we should adapt the geometry of our simple charge plates to the geometry of
the transmission line:

Coplanar Strip

a

b/2 b/2

ay

z
x

Compare a sketch of equipotential lines below for the two semi-infinite plates that you
solved in this test problem to the coplanar strip transmission line with finite plates:
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Two Semi-Infinite Plates Coplanar Strip
Transmission Line

Your expressions are a pretty good approximation to the fields and charges in this very
practical problem. The approximation only breaks down close to the origin. However,
many engineers use the approximations of this problem to derive per-unit-length ca-
pacitance and inductance for coplanar strip transmission lines – particularly when b is
small relative to a. If this is true, then per-unit-length capacitance is given by

C =
ρL

V0
=

1

V0

b

2
+a

∫

b

2

ρs dρ =

b

2
+a

∫

b

2

2ǫV0 dρ

πρ
=

2ǫ

π
ln

(

1 +
2a

b

)

Utter sweetness!

(2) MOSFET Charge:

(a) Below is the orientation and coordinate system used to solve this problem. There are,
of course, more ways than one to set this up:
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(b) Following from this geometry:

V (~r) =

∫∫

S

ρS(~r′)dS

4πǫ||~r − ~r′||
=

ρ0

4πǫ

d1+d0∫

d1

dz′
L∫

0

dy′
1

√

x2 + (y−y′)2 + (z−z′)2

︸ ︷︷ ︸

Positive Charge Plate

−
ρ0

4πǫ

d0∫

0

dz′
L∫

0

dy′
1

√

(x − wGD)2 + (y−y′)2 + (z−z′)2

︸ ︷︷ ︸

Negative Charge Plate

Looks messy, but now it is at least in a form that can be easily entered into a computer
and evaluated.

(c) If you know voltage as a function of 3D space, you can calculate field from the following
relationship:

~E(x, y, z) = −∇V (x, y, z)

(3) MOSFET Current:

(a) A constant current density J0 is flowing through a rectangular L × dn area. Thus,
I = J0Ldn.

(b) Below is the orientation and coordinate system used to solve this problem. There are,
of course, more ways than one to set this up:
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(c) Following from our geometry:

~H(~r) =

∫∫

V

∫ ~J(~r′) × (~r − ~r′)dV

4π||~r − ~r′||3
=

+ 1

2
wGD∫

−
1

2
wGD

dx′

+ L

2∫

−
L

2

dy′

+ dn

2∫

−
dn

2

dz′
J0x̂ × [(x − x′)x̂ + (y − y′)ŷ + (z − z′)ẑ]

[(x − x′)2 + (y − y′)2 + (z − z′)2]
3

2
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This expression gets full credit. The intrepid may want to simplify further by distribut-
ing the cross-product:

~H(x, y, z) = J0

+ 1

2
wGD∫

−
1

2
wGD

dx′

+ L

2∫

−
L

2

dy′

+ dn

2∫

−
dn

2

dz′
(y − y′)ẑ − (z − z′)ŷ

[(x − x′)2 + (y − y′)2 + (z − z′)2]
3

2

Now ready to use the computer!

(d) If this rectangular slab of current were the only current present, then the gate would
be creating charges and sending them to the drain where they are instantly destroyed.
In practice, of course, there are return current paths that carry charges away from
the drain and back to the gate outside the MOSFET. Our solution, however, is not a
bad approximation if we are studying H-fields in and around the MOSFET, where the
rectangular slab of current is the dominant contributor.


