Syllabus for Electromagnetic Applications
ECE 3065 – Spring 2005

Class Description:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Cr Hrs</th>
<th>Instructor</th>
<th>Days</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE-3065</td>
<td>Electromagnetic Applications</td>
<td>3</td>
<td>Greg Durgin</td>
<td>T Th</td>
<td>3:05 PM - 4:25 PM</td>
<td>Van Leer 341</td>
</tr>
</tbody>
</table>

ECE 3065 Electromagnetic Applications

In this course, we apply Maxwell’s equations to a number of interesting and useful applications. Subjects include advanced transmission line theory, radio wave propagation, waveguides, fiber optics, resonators, two-port analysis, and antenna theory.

Instructor: Greg Durgin
Office: 511 Van Leer
Office Hours: T, Th 4:30 - 5:00 p.m.
Additional hours to be announced
Others by appointment
E-mail: durgin@ece.gatech.edu
Office Phone: (404) 894-2951
Class Web Page: http://www.propagation.gatech.edu/ECE3065

Prerequisites: Students must have taken ECE 3025 and received a C or higher.

Grading:

15% Homework – Expect approximately 8 homework assignments over the course of the semester.

65% 2 Midterms and a Final Examination – There will be 3 in-class examinations (2 midterms and 1 final). The two highest midterm scores will count 25% each toward the final class grade; the lowest midterm score will only count 15% toward the final class grade.
20% Project – A class project will be assigned later in the semester and turned in the last week of class.

Test Dates: Tests will be administered on the following days:
- Midterm 1 – 17 February 2004 (Thursday)
- Midterm 2 – 7 April 2004 (Thursday)
- Final Exam – 6 May 2004 (Friday) 11:30am – 2:20pm
Any change to this schedule will be announced with advanced (more than 1 week) notice.

Computer Usage: The web will be used extensively in this class to disseminate homework assignments, lecture materials, and class announcements.

Some homework assignments may involve the use of Matlab™ software. Most students should have access to this software through a university computer lab or their own personal computing packages. If not, please inform the instructor.

Tentative Lecture Topics:
1. Sinusoidal Transmission Lines
2. Plane Waves in Simple Media
3. Radio Wave Propagation
4. Waveguides
5. Resonators and Cavities
6. Multi-Port Analysis
7. Antenna Theory

Honor Code: The Honor Code applies to every aspect of this class, with only one noteworthy exception: student discussion of concepts and techniques for solving homework problems is permitted and even encouraged outside the classroom. However, *all submitted work must be original.*