Homework 7

ECE 4370

Problem 1:

Assuming an ideal field distribution with uniform phase from the TE_{10} mode of a rectangular waveguide has been propagated to the aperture of a horn antenna with width *A* and height *B*, calculate the directivity pattern and ideal peak gain (assuming 100% radiation efficiency) in terms of *A*, *B*, and λ . (10 points)

Problem 2:

You must design a 4 GHz horn antenna with maximum peak gain, fed by a standard rectangular waveguide ($a = 2b = \lambda/2$). The maximum length of the flared horn antenna, R_p , must not exceed 50 cm. Provide an engineering diagram, fully dimensioned, for your company's metal shop to produce. (10 points)

Solution to Homework 7

Problem 1:

For TE,o Horn Antenna $E_{\alpha}(x',y',o) = E_{\alpha}cos(\frac{\pi x'}{\alpha})$ KHIT: E. (r. o, p)= JE. K cose exp(-+6/3 p(jk) sine cospx + sines COS qz Sin(ksing b Singh) ksinows dx'cos sindsind -a/2 $k \sin \theta b \sin \theta / 2)$ $n \theta \Gamma T^2 - \alpha^2 K^2 \sin^2 \theta$ exp(-jkr = cos (aksin & cosø Siso x,4,0, ab = sin2 (bksindsind/2) cos2 (a ksindsing 4att c sin Peak Gain D(0,0) = IT (ab

Problem 2:

Horn Antenna Calculator		
Frequency	4000	MHz
Wavelength	0.075	m
Waveguide Width, a	0.038	m
Waveguide Width, b	0.019	m
Flare Length, Rp	0.500	m
Aperture Width, A	0.340	m
Aperture Width, B	0.276	m
H-Taper Depth, RH	0.562	m
E-Taper Depth, RE	0.536	m
Ideal Peak Gain	23.2	dBi