1. Uniform Linear Antenna Arrays:

(1) b: $N = 4$, $\beta = -90^\circ$, $d = \frac{\lambda}{4}$ (ordinary endfire)

(2) f: $N = 4$, $\beta = +90^\circ$, $d = \frac{\lambda}{4}$ (ordinary endfire)

(3) $N = 5$, $\beta = -120^\circ$, $d = \frac{\lambda}{2}$

(4) a: $N = 3$, $\beta = 0^\circ$, $d = \frac{\lambda}{2}$

(5) i: $N = 4$, $\beta = 112.5^\circ$, $d = \frac{3\lambda}{16}$ (Hansen-Woodward endfire)

(6) e: $N = 8$, $\beta = 101.75^\circ$, $d = \frac{7\lambda}{32}$ (Hansen-Woodward endfire)

(7) d: $N = 2$, $\beta = 0^\circ$, $d = 5\lambda$

(8) h: $N = 10$, $\beta = 0^\circ$, $d = \frac{\lambda}{2}$

Apologies, as this problem had several typos in it whose corrections didn’t recompile in Latex. The graders were extra lenient and omitted some blanks.
2. **Small-Scale Fading:**

 (a) 1.5 %

 (b) 0.66 %

 (c) add an extra antenna

3. **Design of a Helical Antenna:**

 (a) 16.7 cm

 (b) 40.2°

 (c) $2.25 \text{ GHz} \leq f \leq 4.0 \text{ GHz}$

4. **Horn or Yagi?**:

 (a) **Y**: You need to put a directional antenna high on a thin, steerable mast with minimal wind shear forces.

 (b) **H**: You need to make a directional antenna that operates at 20 GHz.

 (c) **Y**: You need to make a directional antenna that operates at 300 MHz.

 (d) **H**: You need to make an antenna that operates at 2 GHz with 9 dBi of peak gain and maximal bandwidth.

 (e) **Y**: You need to make an antenna named after a Japanese professor.