
Chapter 5

FIRST-ORDER CHANNEL
STATISTICS

The received power in fading wireless channels fluctuates between maxima and
minima as a function of space, time, and frequency. A wireless engineer must

accept the fact that for certain regions in space, time, or frequency, the receiver may
have to operate with received signal strength below an acceptable signal-to-noise or
signal-to-interference ratio. To quantify the effects of a fading channel on receiver
performance, we must first quantify the distribution of received power or voltage
envelope that a receiver experiences in a randomly selective channel.

This chapter develops the principles of first-order analysis for stochastic
frequency-selective and spatially selective radio channels. The most important tool
in a first-order analysis is the probability density function (PDF). In developing the
use of a PDF for modeling random channels, the chapter discusses the following key
points:

Section 5.1: Discussion of mean received power.

Section 5.2: Construction of envelope PDFs for I-SLAC models.

Section 5.3: Analytical solutions to I-SLAC envelope PDFs.

Section 5.4: Analysis of the two-wave with diffuse power (TWDP) PDF.

Section 5.5: Summary of important concepts.

This chapter uses the definitions and concepts from the preceding chapters to de-
velop many of the classical distributions used in wireless engineering to describe
small-scale fading. Furthermore, new fading distributions that augment the classi-
cal understanding are developed and discussed. Indeed, the SLAC model defined in
Chapter 4 is shown to produce an incredible variety of first-order channel behavior.

107



108 Space–Time Wireless Channels First-Order Channel Statistics Chapter 5

5.1 Mean Received Power

Of all first-order statistics to calculate for stochastic channel model, mean received
power is perhaps the most common. Regardless of other statistical fading prop-
erties, mean received power is an intuitive measure of receiver performance, since,
according to information theory, received power is related to the fundamental lim-
itations on the amount of information that can be sent through a noisy channel
[Cov91].

5.1.1 Average Versus Received Power

Consider a SLAC model with three constant-amplitude waves. Movement in fre-
quency or space causes a steady phase rotation of each, as illustrated in Figure 5.1.
Different components rotate at different speeds and directions (clockwise or counter-
clockwise in Figure 5.1). When the three waves are summed from one moment to
the next, the composite signal undergoes constructive-destructive interference. In
this way, the total envelope of a received radio signal is rarely near its average
value. The distribution of a random envelope process about its average level has a
dramatic effect on radio link performance. Thus, this chapter presents a thorough
discussion of the moments and the PDFs of envelope processes.

5.1.2 Stationarity

Stationarity is one of the most important and powerful attributes to determine
in a stochastic model. There are many different types of stationarity (we have
already discussed wide-sense stationarity in previous chapters). In fact, the term
stationary may be used to describe any type of statistic that is invariant of channel
dependencies. For example, a time-varying process is mean stationary if its mean
value does not change as a function of time.

Often, statistics of an entire order are said to be stationary. The order of a
statistic refers to the number of stochastic process samples used in its calculation.
For example, the autocorrelation function is a second-order statistic because it is
calculated from two samples of the stochastic process, as shown in Equation (3.1.2).
One sample is taken at t1 and the other sample is taken at t2.

In this chapter, it is useful to establish first-order stationarity in the stochastic
channel models. A process is first-order stationary if all of its first-order statistics -
mean, variance, PDF, and so on - are invariant of the dependencies space and
frequency. The U-SLAC model is a first-order stationary channel model, which
makes it a convenient tool for analytical channel description. This trait of the
U-SLAC model is proven in Theorem 5.1.

Theorem 5.1: First-Order Stationarity

Statement: The U-SLAC model is first-order stationary.
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Figure 5.1 Example of three specular waves that add to form a small-scale fading channel.

Proof: Consider the U-SLAC model of Equation (4.4.1) evaluated at fre-
quency f = 0 and position )r = )0. The resulting channel expression is shown
below

h̃(0,)0) =

N∑
i=1

Vi exp
(
j
[
Φi − )ki ·)r− 2πfτi

])∣∣∣∣∣
f = 0

r = 
0

=

N∑
i=1

Vi exp(jΦi)

(5.1.1)
Now consider the case of the channel evaluated at any arbitrary point in
frequency, f , and space, )r. By making the following substitution,

Φ′
i =

(
Φi − )ki ·)r− 2πfτi

)
mod 2π
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we could express the U-SLAC model in the following form:

h̃(f,)r) =

N∑
i=1

Vi exp(jΦ′
i) (5.1.2)

The random phases, {Φ′
i}, in Equation (5.1.2) are the same set of random

phases, {Φi}, in Equation (5.1.1) with arbitrary constants added. Other-
wise, the two equations look identical. Since a uniform phase random variable
remains uniformly distributed if any arbitrary constant is added to it, the ex-
pressions in Equation (5.1.1) and Equation (5.1.2) are identically distributed
random variables. Adding the constant does not change the cyclical correla-
tion properties, either. Thus, the distribution of values for h̃(f,)r) is identical
and independent of frequency, f , and position, )r - the definition of first-order
stationary.

Note: Confusion of Order and Moments
The difference between the orders and the moments of a stochastic process causes
endless confusion. The term moment refers to a family of first order statistics. For
example, E {R(f,)r)}, E

{
R(f,)r)2

}
, and E

{
R(f,)r)3

}
are the first, second, and third

moments of the envelope process R(f,)r) - but all three are first-order statistics.

The most sweeping type of stationarity is strict-sense stationary (SSS) behavior.
A stochastic process is SSS if it is stationary with respect to every order. While
establishing SSS behavior in a process is highly desirable, it is extremely difficult
to prove in most types of stochastic processes. The I-SLAC model is an exception,
as Theorem 5.2 demonstrates.

Theorem 5.2: Strict-Sense Stationarity

Statement: The I-SLAC model is strict-sense stationary.

Proof: Consider a simple stochastic channel consisting of a single wave term:

h̃1(f,)r) = V1 exp
(
j
[
Φ1 − )k1 ·)r − 2πfτ1

])
where V1 is a constant amplitude and Φ1 is a random phase variable, uniformly
distributed over the interval [0, 2π). This process is SSS [Pap91, p. 301]. Since
the sum of two independent SSS processes will produce an SSS process, the
following process

h̃2(f,)r) = h̃1(f,)r) + V2 exp
(
j
[
Φ2 − )k2 ·)r− 2πfτ2

])
is SSS provided the random phase variable, Φ2, is independent of Φ1 (as it is
in an I-SLAC model). An arbitrary number of independent wave components
may be added in this manner and, by induction, any I-SLAC model may be
constructed and shown to be an SSS process.



Section 5.1. Mean Received Power Space–Time Wireless Channels 111

It is probably evident now why we draw a distinction between SLAC, U-SLAC,
and I-SLAC models: The nature of the phase distributions in the model of Equa-
tion (4.4.1) (arbitrary, uncorrelated, or independent) determines the level of sta-
tionarity. A SLAC model may be nonstationary with respect to every statistic.
A U-SLAC model, however, is guaranteed to be at least WSS (Theorem 4.2 and
Theorem 5.1). An I-SLAC model is guaranteed to be stationary with respect to
every order and statistic (Theorem 5.2).

5.1.3 Mean U-SLAC Power

For a WSS U-SLAC model, it is possible to calculate a closed-form expression for
the mean received power, P (f,&r). Inserting the SLAC model expression into the
definition of mean received power produces

E {P (f,&r)} = E
{
|h̃(f,&r)|2

}

=
N∑
l=1

N∑
m=1

VlVm E {exp (j [Φl − Φm])}︸ ︷︷ ︸
= 0 for l �=m

exp
(
j
[
(&km − &kl) ·&r + 2π(τm − τl)f

])

=
N∑

m=1

V 2m (5.1.3)

The expectation in the second line of Equation (5.1.3) is zero form �= l by definition
of a U-SLAC process. The end result of Equation (5.1.3) may be stated in words as
follows: The mean power in a U-SLAC model is equal to the sum of the powers car-
ried by the individual multipath waves [Rap02a]. Stated this way, Equation (5.1.3)
can be considered a type of conservation-of-power law.

5.1.4 Frequency and Spatial Averaging

In the application of first-order statistics to real-life problems, it is important to
speak of averaging. This is particularly true when attempting to measure the local
area channel. In practice, it is not possible to generate an infinitum of realizations
and calculate an ensemble. Rather, it is most feasible to average a measured statistic
over a single realization.

This averaging may occur over each dependency of the measured channel. For
example, sweeping a narrowband transmitted carrier over a range of frequencies and
measuring the received voltage is a form of frequency averaging. Mathematically,
we will define the operation of frequency averaging as

〈
·
〉
f
= lim

B→∞
1
B

B/2∫
−B/2

( · ) df (5.1.4)
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In this definition, a statistic is calculated by averaging the value over the range of
all allowable frequencies. In practice, the integration of Equation (5.1.4) cannot be
taken over an infinite range.

A similar definition exists for spatial averaging. Mathematically, we will define
the operation of spatial averaging as

〈
·
〉
�r
= lim

L→∞
1
L3

L/2∫
−L/2

( · ) d&r (5.1.5)

where the integration in Equation (5.1.5) is a threefold integration over the x, y,
and z coordinates.

5.1.5 Ergodicity

Stochastic processes with statistics that exhibit ergodicity are particularly useful for
measurements and analysis of real-world processes. A statistic is said to be ergodic
if, when measured by averaging a single realization of a stochastic ensemble, it
is equal to the ensemble average. For example, a process is mean-ergodic if the
frequency- and spatially-averaged mean of a single realization equals the ensemble-
averaged mean. We express mean ergodicity for a stochastic channel as

Condition for Mean Ergodicity:
〈〈
h̃(f,&r)

〉
�r

〉
f
= E

{
h̃(f,&r)

}
Of course, this property must hold for all realizations of h̃(f,&r) in the stochastic
ensemble.

Since there are two dependencies in the SLAC model - frequency and space - it
is convenient to describe ergodicity with respect to each individual dependency. For
example, it is possible that a statistic is ergodic with respect to frequency but not
space. The converse is also possible. The basic principles governing the frequency
and spatial ergodicity of mean received power are summarized in Theorem 5.3.

Theorem 5.3: Power Ergodicity

Statement:

1. A U-SLAC model is power-ergodic with respect to frequency if its scat-
tering is heterogeneous with respect to frequency.

2. A U-SLAC model is power-ergodic with respect to space if its scattering
is heterogeneous with respect to space.

3. All U-SLAC models with heterogeneous scattering are power-ergodic
with respect to both space and frequency.

Proof:
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1. The frequency averaged power of any SLAC model is given by insert-
ing Equation (4.4.1) into the frequency-averaging operation defined in
Equation (5.1.4):

〈P (f,)r)〉f =
〈
|h̃(f,)r)|2

〉
f

=

N∑
l=1

N∑
m=1

VlVm exp
(
j
[
Φl − Φm + ()km − )kl) ·)r

])
×〈exp (j2π[τm − τl]f)〉f︸ ︷︷ ︸

= 0 for τm �=τl

(5.1.6)

If all delays, {τi}, in the SLAC model are heterogeneous (dissimilar),
then the result in Equation (5.1.6) reduces to

〈P (f,)r)〉f =

N∑
m=1

V 2
m (5.1.7)

which is the ensemble average for power in a U-SLAC model.

2. The spatially averaged power of any SLAC model is given by inserting
Equation (4.4.1) into the space-averaging operation defined in Equa-
tion (5.1.5):

〈P (f,)r)〉�r =
〈
|h̃(f,)r)|2

〉
�r

=

N∑
l=1

N∑
m=1

VlVm exp (j [Φl − Φm + 2π(τm − τl)f ])

×
〈
exp

(
j[)km − )kl] ·)r

)〉
�r︸ ︷︷ ︸

= 0 for �km �=�kl

(5.1.8)

If all wavevectors, {)ki}, in the SLAC model are heterogeneous (dissimi-
lar), then the result in Equation (5.1.8) reduces to

〈P (f,)r)〉�r =

N∑
m=1

V 2
m (5.1.9)

which is also the ensemble average for power in a U-SLAC model.

3. This result follows logically from 1 and 2.

An immediate consequence of Theorem 5.3 is the equivalence of averaging re-
ceived power with respect to frequency or space. If a SLAC model has heterogeneous
scattering, then the following result holds:

〈P (f,&r)〉f = 〈P (f,&r)〉�r (5.1.10)
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In other words, received power averaged as a function of frequency produces the
same result as received power averaged as a function of space. Both are equal to
the ensemble-averaged power of the U-SLAC model that describes the location.

This equivalence is particularly powerful when measuring local area power in
a real-life radio channel. The experimentalist has the freedom to calculate mean
power in a channel measurement by using

(a) a wideband transmitted signal and a fixed-antenna receiver [Rap02a].

(b) a narrowband transmitted signal and a receiver antenna moving in space
[Dur98b].

For case (a), the mean power is calculated from the received power averaged over
the frequencies in the wideband signal. For case (b), the mean power is calculated
from the received power averaged at the different receiver positions in space. The
two techniques are equivalent.

Note: Importance of Heterogeneous Scattering
By now it is clear why Chapter 4 introduced the concept of heterogeneous scattering.
Heterogeneous scattering is a crucial property for determining ergodicity. Ergodicity
is a crucial property for determining the “measurability” of a real channel. Hence,
the property of heterogeneous scattering determines how statistics may be calculated
from a real-world channel measurement.

5.2 Envelope Probability Density Functions

Mean received power is just one aspect of first-order stochastic channel behavior.
To understand the complete first-order behavior, it is necessary to calculate the
power or envelope PDF. This section describes the generation of PDFs for a variety
of I-SLAC models.

5.2.1 Notes and Concepts

The PDFs developed in this section are strictly for I-SLAC models. In order to
derive a deterministic expression for the distribution of received power or voltage
envelope, it is necessary to have a uniquely defined joint PDF on the phases of a
SLAC model. A U-SLAC model, which only asserts uncorrelated phases, is not
restrictive enough for this criterion. The I-SLAC model, with its independent,
uniformly distributed phases, does have a specific joint PDF describing phases.

Furthermore, the envelope PDFs of this section are based on the reduced wave
grouping (see Section 4.3.4). As will become apparent later, envelope PDFs in-
volving a diffuse, nonspecular component depends only on the mean-squared power
of that component - not the fine multipath wave structure within the component.
Thus, when constructing a PDF from an arbitrarily complicated I-SLAC model, the
reduced wave grouping may be used without loss of generality.
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Finally, all of the PDFs presented in this chapter are with respect to received
voltage envelope. If a distribution with respect to received power is desired, the
envelope PDF may be converted to a power PDF. Since envelope, R, is simply
equal to the square root of power, P , the following relationships hold:

Converting envelope PDF to power PDF: fP (p) =
1

2
√
p
fR(
√
p) (5.2.1)

Converting power PDF to envelope PDF: fR(ρ) = 2ρfP (ρ2) (5.2.2)

Most wireless journal papers, as a convention, report envelope PDFs.

5.2.2 Characteristic Functions

Since the reduced wave grouping of Equation (4.3.4) is a sum of independent ran-
dom variables, the envelope PDF may be found by using a characteristic function
approach. Recall from probability theory that if a real-valued random variable, Z,
is the sum of a set of independent random variables, {Wi}:

Z =
∑
i

Wi

then the characteristic function of Z - the Fourier transform of the PDF - is equal
to the product of the characteristic functions of each individualWi random variable
[Pap91].

The same characteristic function technique may be used for the independent,
complex random variable terms that constitute an I-SLAC model. The diffuse,
nonspecular term and the N specular terms of Equation (4.3.4) are independent
complex variables, each having a characteristic function, ΦXY (υ). The product
of these individual characteristic functions may then be transformed into a PDF
describing the envelope of Equation (4.3.4).

The PDF of a scalar random variable and its characteristic function are Fourier
transform pairs. Since fading PDFs are functions of envelope, and since complex
voltages must be summed as phasors, the transforms for an envelope PDF, fR(ρ),
and its characteristic function, ΦXY (υ), are modified to the following expressions,
as shown in Appendix 5.A:

ΦXY (υ) =

∞∫
0

fR(ρ)J0(υρ) dρ (5.2.3)

fR(ρ) = ρ

∞∫
0

ΦXY (υ)J0(υρ) υ dυ (5.2.4)

To solve the problem of constructing envelope PDFs for a reduced wave grouping,
we must only find the characteristic functions of specular components and diffuse
components.
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Note: The Fourier-Bessel Transform
Equation (5.2.3) and Equation (5.2.4) define a transform pair in the form of a Fourier-
Bessel transform. Also called the Hankel transform, the formal relationship is defined
for the following pair:

fR(ρ)

ρ
←→ ΦXY (υ)

5.2.3 Specular Characteristic Function

A specular voltage term of the form V0 exp(jΦ0) has constant amplitude, V0, and
uniformly random phase, Φ0. The envelope of this term is always V0, regardless of
the phase. Therefore, the envelope PDF of a specular component is best described
by a delta function:

fR(ρ) = δ(ρ− V0) (5.2.5)

Plugging this function into the transform in Equation (5.2.3) produces the specular
characteristic function:

ΦXY (υ) = J0(V0υ) (5.2.6)

Thus, the characteristic function of a specular wave component is a zero-order Bessel
function that depends only on the amplitude of the specular component [Ben48].

5.2.4 Diffuse, Nonspecular Characteristic Function

Diffuse, nonspecular received voltage may be written as the sum of numerous small-
valued wave components.

Ṽdif =
N∑
i=1

Vi exp(jΦi)

=
N∑
i=1

Vi cosΦi + j

N∑
i=1

Vi sinΦi

= X + jY (5.2.7)

which may be grouped into in-phase, X , and quadrature, Y , random variables. In
the limit of large N , the real and imaginary components of Ṽdif follow the central
limit theorem, each tending to zero-mean, identically distributed Gaussian distri-
butions. Provided all the individual amplitudes, {Vi}, remain small relative to the
total power, the distributions of X and Y will be uncorrelated. Thus, the joint
distribution may be written as

fXY (x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(5.2.8)
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where σ2 is the variance of X and Y .
The probability that the random envelope, R, of the diffuse, nonspecular volt-

age is below a level ρ is defined as the cumulative density function (CDF). The
envelope CDF, FR(ρ), may be calculated from the joint distribution, fXY (x, y), by
performing the following integration:

FR(ρ) = Pr [R < ρ] =

2π∫
0

ρ∫
0

fXY (ρ′ cosφ, ρ′ sinφ)ρ′dρ′dφ (5.2.9)

Equation (5.2.9) has a simple geometrical interpretation. If we view the in-phase
component, X , and quadrature component, Y , as coordinates on a Cartesian plane,
then the envelope, R, is simply the Pythagorian distance to the origin, R =√
X2 + Y 2. Thus, the probability that the envelope will be less than a threshold

value ρ is equal to the integration of the joint PDF over a circular region centered
at the origin with radius ρ. Equation (5.2.9) performs this integration.

The PDF is simply the derivative of the CDF. Differentiation of Equation (5.2.9)
produces

fR(ρ) =
dFR(ρ)
dρ

= ρ

2π∫
0

fXY (ρ cosφ, ρ sinφ)dφ (5.2.10)

To obtain the PDF of the diffuse, nonspecular voltage component, we insert the
joint Gaussian PDF of Equation (5.2.8) into Equation (5.2.10). This produces the
following PDF:

fR(ρ) =
ρ

2πσ2

2π∫
0

exp
(
− (ρ cosφ)

2 + (ρ sinφ)2

2σ2

)
dφ

=
ρ

σ2
exp

(
− ρ2

2σ2

)

=
2ρ
Pdif

exp
(
− ρ2

Pdif

)
(5.2.11)

The substitution Pdif = 2σ2 is made to give the PDF more physical meaning. The
value Pdif is the mean power of the nonspecular voltage component,

Pdif = E
{∣∣∣Ṽdif

∣∣∣2}
where Ṽdif is the diffuse component. The power, Pdif, is less nebulous than the value
σ.

The final step simply involves plugging the diffuse, nonspecular envelope PDF
into Equation (5.2.3) to produce the characteristic function

ΦXY (υ) = exp
(
−υ

2Pdif

4

)
(5.2.12)
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Thus, the characteristic function of a diffuse, nonspecular voltage component is
a Gaussian-shaped function that depends only on the average power of the volt-
age component, Pdif [Ric44], [Ric45]. The distribution of amplitudes, {Vi}, is not
important - only the mean-squared power affects the shape of this characteristic
function.

5.2.5 The I-SLAC PDF Generator

Now that the characteristic functions for specular components and diffuse, nonspec-
ular components have been determined, it is possible to construct an envelope PDF
for the reduced wave grouping by chaining the characteristic functions together and
inverting the product using Equation (5.2.4). The general form for the I-SLAC
envelope PDF of the reduced wave grouping, Equation (4.3.4), is given by

fR(ρ) = ρ

∞∫
0

J0(υρ) exp
(−υ2Pdif

4

)[
N∏
i=1

J0(Viυ)

]
υ dυ (5.2.13)

for R =

∣∣∣∣∣Ṽdif +
N∑
i=1

Vi exp(jΦi)

∣∣∣∣∣ and E
{
|Ṽdif|2

}
= Pdif

which is valid for ρ ≥ 0. Equation (5.2.13) allows for any combination of single,
constant-amplitude voltage waves and a diffuse group of voltage waves. As the next
section demonstrates, Equation (5.2.13) has a number of closed-form solutions that
result from standard definite integrals [Abr70], [Gra94].

5.3 Closed-Form PDF Solutions

There are five different types of reduced wave groupings that produce closed-form
solutions for the envelope PDF generator in Equation (5.2.13). This section de-
scribes the five PDFs and discusses their use in wireless communications. Table 5.1
summarizes these cases.

5.3.1 The One-Wave PDF

A trivial case of fading is the one-wave PDF, in which only one constant-amplitude
wave is present in a local area. Its characteristic function, however, is a building
block for other canonical fading PDFs. Integrating Equation (5.2.13) for N = 1
and Pdif = 0 produces a result of 0 for all values of r except r = V1, which is infinite
[Abr70, p. 485]. Thus, the PDF is represented by

fR(ρ) = δ(ρ− V1) (5.3.1)

The one-wave PDF, as illustrated in the IQ plot of Figure 5.2, results in no envelope
fading.
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Table 5.1 Summary of Envelope PDFs in Different Fading Environments

Expression for Characteristic E{R} E{R2}
PDF Envelope PDF fR(ρ) Function ΦXY (υ) (volts) (volts2)

One-Wave
No Fading

δ(ρ− V1) J0(V1υ) V1 V 21

Two-Wave
Simple
Fading

2ρ

π
√
4V 2

1 V
2
2 −(V 2

1 +V
2
2 −ρ2)2

|V1 − V2| ≤ ρ ≤ V1 + V2

J0(V1υ)J0(V2υ)
2(V1+V2)

π E
[
4V1V2
(V1+V2)2

]
V 21+V

2
2

Three-Wave†
Max. Discrete

Fading

ρ
1
2

π2
√
V1V2V3

K
(

∆2
ρ

V1V2V3ρ

)
, ∆2

ρ<V1V2V3ρ
∗

ρ
π2∆ρ

K
(
V1V2V3ρ
∆2

ρ

)
, ∆2

ρ<V1V2V3ρ
∗

J0(V1υ)J0(V2υ)J0(V3υ) no closed-form
solution V 21+V 22+V 23

Rayleigh
Numerous
Multipath

2ρ
Pdif

exp
(
−ρ2

Pdif

)
u(ρ) exp

(
−υ2Pdif
4

) √
πPdif
4 Pdif

Rician
Dominant
Component

2ρ
Pdif

exp
(−ρ2−V 2

1
Pdif

)
I0
(
2V1ρ
Pdif

)
u(ρ) J0(V1υ) exp

(
−υ2Pdif
4

)
no closed-form

solution Pdif+V 21

∗ also provided that 2max(V1, V2, V3)−V1−V2−V3 ≤ ρ ≤ V1+V2+V3; otherwise fR(ρ) = 0.
† 16∆2

ρ =
[
(ρ+V1)

2−(V2−V3)
2
] [

(V2+V3)2−(ρ−V1)
2
]

K(x) – Complete First Kind Elliptical Integral E(x) – Complete Second Kind Elliptical Integral

Jn(x) – Bessel Function In(x) – Modified Bessel Function



120 Space–Time Wireless Channels First-Order Channel Statistics Chapter 5

In-Phase

In-Phase

Quadrature

One-Wave IQ Plot Two-Wave IQ Plot

Quadrature

Figure 5.2 IQ plots of a single specular wave with no envelope fading (left) and two specular
waves with constructive-destructive interference (right).

5.3.2 The Two-Wave PDF

The two-wave PDF represents the envelope fading caused by the interference of only
two constant-amplitude waves in a local area, corresponding to N = 2 and Pdif = 0
in Equation (5.2.13). Integration of Equation (5.2.13) under these conditions is a
well-understood result that produces the following PDF [Gra94, p. 718]:

fR(ρ) =
2ρ

π
√
4V 21 V

2
2 − (V 21 + V 22 − ρ2)2

, |V1 − V2| ≤ ρ ≤ V1 + V2 (5.3.2)

Equation (5.2.13) evaluates to zero for ρ < |V1−V2| and ρ > V1+V2, leading to the
limits placed on ρ in Equation (5.3.2). Figure 5.2 shows an IQ sketch of two-wave
envelope fading.

Figure 5.3 plots several examples of the two-wave PDF and CDF using a conve-
nient parameter, ∆, which we have defined to relate the amplitudes of V1 and V2 to
one another [Dur99c]. The ∆-parameter ranges between 0 and 1 and is defined by

∆ =
Peak Specular Power

Average Specular Power
− 1 =

2V1V2
V 21 + V 22

(5.3.3)

As shown in Figure 5.3, when the magnitudes of two multipath waves are equal,
∆ = 1. In the absence of a second component (V1 or V2 = 0), ∆ = 0. For dissimilar
voltage values, the two-wave PDF exhibits two prominent spikes, which mark the
interval over which the PDF is nonzero. For the limiting case of ∆ = 1 (V1 = V2),
the lower spike disappears and the PDF permits envelope values of zero, which
correspond to complete destructive cancellation.
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Example 5.1: Mean of a Two-Wave PDF

Problem: Calculate the mean of a fading envelope that follows a two-wave
distribution with voltages V1 and V2.

Solution: The mean of the two-wave distribution follows from the basic
integral:

E {R} =

∞∫
0

ρfR(ρ) dρ

After inserting Equation (5.3.2) for fR(ρ), we write

E {R} =

V1+V2∫
|V1−V2|

2ρ2 dρ

π
√

4V 2
1 V

2
2 − (V 2

1 + V 2
2 − ρ2)2

This problem becomes much easier after a clever change of integration vari-
ables, ρ =

√
V 2

1 + V 2
2 + 2V1V2 sin(2θ). This substitution produces the follow-

ing simplification:

E {R} =
2

π

π
4∫

− π
4

√
V 2

1 + V 2
2 + 2V1V2 sin(2θ) dθ

=
2(V1 + V2)

π

π
2∫

0

√
1 +

4V1V2

(V1 + V2)2
sin2(θ) dθ

︸ ︷︷ ︸
E
(

4V1V2
(V1+V2)2

)

Thus, the final answer may be expressed in terms of a complete elliptic integral
of the second kind (see Appendix A.5). Note that, as in all other cases, it is
much easier to calculate the power mean from the two-wave distribution than
the envelope mean. Following Equation (5.1.3), the average two-wave power
is simply V 2

1 + V 2
2 .

5.3.3 The Three-Wave PDF

Two- and three-wave models often are used to describe fading in microwave digital
radio communications [Rum86]. The three-wave PDF in Table 5.1 is the solution of
Equation (5.2.13) for N = 3 and Pdif = 0, a result formulated by Nicholson in 1920
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Figure 5.3 Two-wave PDF and CDF with varying ∆ [Dur02].



Section 5.3. Closed-Form PDF Solutions Space–Time Wireless Channels 123

[Nic20] and given below:

fR(ρ) =




0, ρ < ρmin or ρ > ρmax

ρ
1
2

π2
√
V1V2V3

K
[

∆2
ρ

V1V2V3ρ

]
, ∆2ρ<V1V2V3ρ

r
π2∆ρ

K
[
V1V2V3ρ
∆2

ρ

]
, ∆2ρ>V1V2V3ρ

(5.3.4)

The function K(·) is an elliptic integral of the first kind. Note that ∆ρ in Equa-
tion (5.3.4) is a function of ρ. Here we have used the subscript ρ, which is appended
to Nicholson’s notation to avoid any confusion between this parameter and the ∆-
parameter used to describe the two-wave PDF. The values ρmin and ρmax define
the interval over which the integration of Equation (5.2.13) and subsequently the
PDF is nonzero. They are given by

ρmax = V1 + V2 + V3 ρmin = max[2max(V1, V2, V3)− V1 − V2 − V3, 0] (5.3.5)

The expressions in Equation (5.3.5) have an appealing geometric interpretation:
The three-wave PDF is 0 for all ρ such that four line segments of lengths ρ, V1, V2,
and V3 are incapable of forming a quadrilateral [Nic20]. An IQ sketch of three-wave
envelope fading was the example shown in Figure 5.1.

As one might expect, the behavior of the three-wave PDF is varied and compli-
cated. Figure 5.4 plots just a few examples of the PDF and corresponding CDF.
A comparison of the three-wave CDFs of Figure 5.4 and the two-wave CDFs of
Figure 5.3 provides insight into the difference between specular and nonspecular
power. Unlike the two-wave case, the different plots of the three-wave CDF are
much more similar to one another. This similarity is due to the central limit the-
orem: The addition of another constant-amplitude wave to two-wave propagation
makes the total multipath power more nonspecular. Despite the complex shape of
the CDF, the general cases of three-wave propagation begin to approach the CDF
for purely nonspecular power. Thus, even if it were possible to analytically calculate
a “four-wave PDF,” its usefulness would be limited, since the most general cases
will appear to be even more Rayleigh-distributed than the three-wave PDF.

5.3.4 The Rayleigh PDF

The Rayleigh PDF assumes that all multipath power is nonspecular and occurs
from the integration of Equation (5.2.13) under the condition N = 0 and nonzero
Pdif. This definite integral is a standard result and produces the following PDF
[Gra94, p. 738]:

fR(ρ) =
2ρ
Pdif

exp
(−ρ2
Pdif

)
, ρ ≥ 0 (5.3.6)

This result was derived as Equation (5.2.11). Unlike the purely specular wave PDFs,
the Rayleigh PDF is nonzero over the entire range of 0 ≤ ρ < ∞. The Rayleigh
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Figure 5.4 Three-wave CDF and PDF for four cases [Dur02].
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PDF has been used extensively to describe narrowband local area fading for mobile
radio receivers [Par92], [Reu74], [Jak74]. An IQ sketch of the Rayleigh PDF is
shown in Figure 5.5.

In-Phase

Quadrature

In-Phase

Quadrature

Rayleigh IQ Plot Rician IQ Plot

Figure 5.5 IQ coordinates with identical, independent Gaussian distributions produce a Rayleigh
distribution (left), and adding a specular component produces a Rician distribution (right).

The Rayleigh distribution is the most popular distribution for calculating fade
margins in radio links for wireless local area networks, cellular phones, and other mo-
bile radio applications. A fade margin is the difference, usually in dB, between the
average local area power and the minimum power level for reliable communications.
For example, even on the fringe of a coverage area, a wireless engineer plans for an
average local area power that is 14 dB to 18 dB higher than the minimum power
required for maintaining an acceptable signal-to-noise+interference ratio. Without
this extra margin, the channel will fade and create numerous outages (i.e., losses of
data or service). Example 5.2 illustrates one type of outage calculation.

Example 5.2: Prediction of Link Outage

Problem: An indoor wireless link sends packet data through a Rayleigh
fading radio channel. If the link suffers a signal strength fade of more than 10
dB with respect to the average power, packets begin to drop and data is lost.
Given this information, about what percentage of data packets are dropped?

Solution: If the average power of a Rayleigh fading radio link is Pdif, then
a 10 dB fade corresponds to a power of 0.1Pdif or, equivalently, a drop of
0.3162

√
Pdif in envelope. To calculate the probability of a Rayleigh channel
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dropping below this threshold, we setup and evaluate the following integral:

Pr[0 ≤ R < 0.3162
√
Pdif] =

0.3162
√
Pdif∫

0

2ρ

Pdif
exp

(
−ρ2

Pdif

)
dρ

= − exp

(
−ρ2

Pdif

)∣∣∣∣ρ=0.3162
√
Pdif

0

= 0.0952

If we assume that fades are slow with respect to data packet length, we can
estimate that 9.5% of the packets will be dropped.

5.3.5 The Rician PDF

The Rician PDF describes the fading of nonspecular power in the presence of a
dominant, nonfluctuating multipath component [Reu74], [Ric48]. The analytical ex-
pression for the Rician distribution results from the integration of Equation (5.2.13)
under the condition N = 1 and nonzero Pdif. After applying a well-understood def-
inite integral relationship [Gra94, p. 739], the resulting PDF is

fR(ρ) =
2ρ
Pdif

exp
(−ρ2 − V 21

Pdif

)
I0

(
2ρV1
Pdif

)
, ρ ≥ 0 (5.3.7)

where I0(·) is a zero-order modified Bessel function. An IQ sketch of the Rician
PDF is shown in Figure 5.5.

Figure 5.6 shows several different kinds of Rician PDFs and CDFs. The plots
are labeled using a Rician K factor, which is the ratio of the power of the dominant
multipath component to the power of the remaining nonspecular multipath:

K =
Specular Power

Nonspecular Power
=

V 21
Pdif

(5.3.8)

In the literature, the parameter K is often given as a dB value, which is 10 log10
of the quantity in Equation (5.3.8). Notice from Figure 5.6 that K = −∞ dB
corresponds to the Rayleigh PDF and the complete disappearance of the specular
power.

Note: A Useful Approximation
As the Rician K-factor becomes large (K � 1), it is possible to approximate the
Rician distribution with a Gaussian PDF of the following form:

fR(ρ) =
1√
πPdif

exp

(
− (ρ− V1)

2

Pdif

)
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[Dur02].
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Note: Rice or Nakagami
The Rician distribution is also called the Rice-Nakagami distribution in the literature
to recognize the result that was independently formulated by outstanding Japanese
researcher M. Nakagami. The term Rician is used in this work not to diminish
Nakagami’s contribution, but to avoid confusion with another popular PDF in ra-
dio channel modeling that bears his name: the Nakagami-m distribution [Nak60].
This distribution was originally formulated for characterizing temporal fading mea-
surements from upper-atmosphere propagation but has been applied liberally to the
small-scale fading of terrestrial wireless systems as well [Cou98a], [Yac00].

5.4 Two-Wave with Diffuse Power PDF

If Equation (5.2.13) is evaluated with N = 2 and nonzero Pdif, then the two-wave
with diffuse power (TWDP) PDF results [Esp73], [Dur02]. Such a distribution,
while difficult to model analytically, provides the greatest wealth of fading behavior
for an I-SLAC model.

5.4.1 Approximate Representation

We will use parameters similar to the physical RicianK-parameter of Equation (5.3.8)
and the two-wave ∆-parameter of Equation (5.3.3) to classify the shape of the
TWDP PDF:

K =
V 21 + V 22
Pdif

∆ =
2V1V2
V 21 + V 22

(5.4.1)

There is no exact closed-form equation for TWDP fading, but this section presents
a family of closed-form PDFs that closely approximate the behavior of the exact
TWDP PDF.

An IQ sketch of TWDP fading is shown in Figure 5.7. One common approxi-
mation to the TWDP PDF is presented in [Dur02]:

fR(ρ) =
2ρ
Pdif

exp
(−ρ2
Pdif

−K
) M∑

i=1

aiD

(
ρ√
Pdif/2

;K,∆cos
π(i−1)
2M−1

)
(5.4.2)

where

D (x;K,α) =
1
2
exp(αK)I0

(
x
√
2K(1− α)

)
+

1
2
exp(−αK)I0

(
x
√
2K(1 + α)

)
.

The value M in the summation is the order of the approximate TWDP PDF.
By increasing the order in Equation (5.4.2), the approximate PDF becomes a more
accurate representation of the true TWDP PDF. However, using the first few orders
(M = 1 through 5) yields accurate representations over the most useful range of
K and ∆ parameters. Table 5.2 records the exact {ai} coefficients for the first five
orders of Equation (5.4.2).
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In-Phase

Quadrature

Figure 5.7 A diffuse, Rayleigh component added to two randomly phased specular waves to
produce a TWDP distribution.

Table 5.2 Exact Coefficients for the First Five Orders of the Approximate TWDP Fading PDF

Order a1

1 1 a2

2 1
4

3
4 a3

3 19
144

25
48

25
72 a4

4 751
8640

3577
8640

49
320

2989
8640 a5

5 2857
44800

15741
44800

27
1120

1209
2800

2889
22400

The product of the parameters K and ∆ determines which order of Equa-
tion (5.4.2) should be used when representing TWDP fading. As the product of
these two parameters increases, a higher order approximation is needed to model
the TWDP PDF accurately. As a general rule of thumb, the minimum order is

Order (M) =
⌈
1
2
K∆

⌉
(5.4.3)

where �·� is the ceiling function (round up). Equation (5.4.3) is based on a graphical
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comparison between the approximate analytical functions and the true, numerical
solution of the TWDP PDF. The approximate PDF will deviate from the exact
TWDP PDF only if the specular power is much larger than the nonspecular power
(large K value) and if the amplitudes of the specular voltage components are rela-
tively equal in magnitude (∆ approaches 1).

Example 5.3: Order-2 Approximate TWDP PDF

Problem: Using Table 5.2 and Equation (5.4.2), calculate the order-2 ap-
proximate TWDP PDF.

Solution: Plugging the coefficients a1 and a2 into Equation (5.4.2) produces

fR(ρ) =
2ρ

Pdif
exp

(
−ρ2

Pdif
−K

)[
1

4
D

(
ρ√
Pdif/2

;K,∆

)
+

3

4
D

(
ρ√
Pdif/2

;K,
∆

2

)]

which, in this form, is not much more complicated than a Rician PDF.

Despite being an approximate result, the family of PDFs in Equation (5.4.2)
have a number of extraordinary characteristics that are independent of order, M ,
and parameters, K and ∆:

They are mathematically exact PDFs. They integrate to 1 over the range
0 ≤ ρ <∞.

They are accurate over their upper and lower tails. These regions are impor-
tant for modeling noise-limited or interference-limited mobile communication
systems [Cou98b].

They all exactly preserve the second moment of the true PDF. The second mo-
ment is the most important moment to preserve, since it physically represents
the average local area power [Rap02a].

They can be entirely described with three physically intuitive parameters. The
physical parameters Pdif, K, and ∆ - as defined in this book - have straight-
forward physical definitions.

They exhibit the proper limiting behavior. All of the PDFs contain, as a special
case of ∆ = 0, the exact Rician PDF and, as a special case of K = 0, the
exact Rayleigh PDF.

Accurate analytical representation of these PDFs reveals interesting behavior in fad-
ing channels that goes unnoticed using Rician PDFs, which are capable of modeling
the envelope fading of diffuse power in the presence of only one specular component.

It should be noted that there are many interesting ways to approximate the
TWDP PDF and other nonanalytic forms of Equation (5.2.13) (see the work by
Esposita and Wilson in [Esp73] and Abdi et al. in [Abd00]).
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5.4.2 Graphical Analysis

Figures 5.8 through 5.11 plot a series of PDFs and CDFs for TWDP fading. As
shown by Figure 5.8, there is little difference between the Rician PDF and the
TWDP PDF when K is less than 3 dB. The difference gradually becomes more
pronounced as K increases, particularly when the specular power is divided equally
between the two discrete components (∆ = 1). The K = 10 dB graph of Figure 5.11
illustrates these distortions most dramatically. In fact, as the product of parameters
K and ∆ becomes large, the graph of the PDF becomes bimodal, exhibiting two
maxima.

5.4.3 Rayleigh and Rician Approximations

For the limiting parameter cases of Table 5.3, the exact TWDP PDF contains the
Rayleigh, Rician, one-wave, and two-wave PDFs. This demonstrates the generality
of the exact and approximate TWDP PDFs. It also shows the utility of the three-
wave PDF, since it is the only analytical expression in Table 5.1 that is not a general
case of the TWDP PDF.

Table 5.3 The TWDP PDF Contains the Rayleigh, Rician, One-Wave, and Two-Wave PDFs as
Special Cases

Parameter Value Type of Fading

K = 0 – Rayleigh
K > 0 ∆ = 0 Rician
K →∞ ∆ = 0 One-Wave
K →∞ ∆ > 0 Two-Wave

Since the Rician and Rayleigh PDFs are special cases of the TWDP PDF, it is
useful to know the range of parameters over which TWDP fading may be approx-
imated by these simpler distributions. An inspection of the graphs of Figure 5.8
through Figure 5.11 reveals the range ofK and ∆ over which a Rician PDF approxi-
mates a TWDP PDF. In general, the TWDP PDF resembles a Rician PDF in shape
forK∆ < 2. Under this condition, the smallest of the two specular components may
be grouped with the nonspecular power so that only one large specular component
remains. After computing a Rician K-factor for this new grouping, the resulting
Rician PDF will approximately describe the envelope of the TWDP fading.

TWDP fading may be further approximated by a Rayleigh PDF if, in addition
to the above-mentioned criterion, the power of the largest specular component is
less than the power of the smaller specular component plus the average nonspecular
power:

max(V 21 , V
2
2 ) < min(V 21 , V

2
2 ) + Pdif

1
2
+

1
2

√
1−∆2 <

1
2
− 1

2

√
1−∆2 +

1
K + 1

(5.4.4)
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Figure 5.8 TWDP PDF and CDF for K = 0 dB [Dur02] (σ =
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This condition derives from Figure 5.6, which shows that Rician PDFs resemble the
shapes of Rayleigh PDFs (after scaling) for a Rician K-factor less than 0 dB. Under
this condition, the entire sum of voltage components may be treated together as
diffuse, nonspecular power, despite the presence of two specular components.

The Rician and Rayleigh approximation conditions, therefore, are best summa-
rized in terms of the TWDP K and ∆ parameters by the following:

Rician Condition: K <
2
∆

(5.4.5)

Rayleigh Condition: K < min
(
2
∆
,

1√
1−∆2

− 1
)

(5.4.6)

These conditions show the parameter range over which a TWDP PDF may be
approximated by an analytically simpler Rician or Rayleigh PDF. If these condi-
tions are not met, then the only recourse is to use Equation (5.4.2) or some other
evaluation of Equation (5.2.13) for N = 2 and nonzero Pdif.

Table 5.4 shows three examples of TWDP fading and determines the simplest
approximate PDF that describes the voltage envelope of each. Case A in Table 5.4
satisfies the Rayleigh condition of Equation (5.4.6). Case B, on the other hand,
satisfies only the Rician condition of Equation (5.4.5). Case C satisfies neither
condition and may not be approximated by a Rayleigh or Rician PDF. Note how
the subtle changes in voltage amplitudes between the three cases drastically affects
the overall shape and calculation of the PDF, emphasizing the need for careful and
accurate representation of TWDP PDFs. See Example 5.4 for another example of
finding the optimum PDF representation.

Table 5.4 Three Examples of TWDP Fading That May Simplify to Rayleigh or Rician PDFs

Example TWDP Voltage Values

1st Specular 2nd Specular Diffuse RMS Parameters Simplest
Case Voltage (V1) Voltage (V2) Voltage (

√
Pdif) K ∆ PDF

A 2 µV 2 µV 3 µV 0.89 1.0 Rayleigh
B 4 µV 2 µV 3 µV 2.22 0.8 Rician
C 4 µV 4 µV 3 µV 3.56 1.0 TWDP

Example 5.4: PDF Grouping

Problem: It is known that an I-SLAC model is composed of three multi-
path waves with voltage amplitudes 4 µV, 3 µV, and 2 µV and a diffuse,
nonspecular component with Pdif = (1µV)2. Find the simplest analytical rep-
resentation, if any, of this envelope PDF.

Solution: Perform the following steps to ascertain the best PDF:
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1. The initial grouping of voltages is [V1 = 4, V2 = 3, V3 = 2, Pdif = 1]
(units dropped for simplicity).

2. There is diffuse power (Pdif �= 0) and there are more than two specular
components (N = 3), so all but the two largest specular components
must be grouped with the nonspecular component. The new grouping
is [V1 = 4, V2 = 3, Pdif = 5].

3. The TWDP factors for this distribution are K = 5 and ∆ = 0.96.
This TWDP distribution is too complicated to simplify to a Rayleigh
distribution (K > 1) or a Rician distribution (K∆ > 1), but can be
approximated accurately by Equation (5.4.2) (K∆ < 10).

4. The value of
⌈
K∆
2

⌉
is 3, so an order-3 approximation of Equation (5.4.2)

should be used to represent the PDF.

5.4.4 TWDP PDF Applications

The TWDP PDF and its approximations are important for characterizing fading
in a variety of propagation scenarios. Small-scale fading is characterized by the
TWDP PDF whenever the received signal contains two strong, specular multipath
waves. While this may occur for typical narrowband receiver operation, directional
antennas and wideband signals increase the likelihood of TWDP small-scale fading.

The use of directive antennas or arrays at a receiver, for example, amplifies
several of the strongest multipath waves that arrive in one particular direction
while attenuating the remaining waves [God97], [Win98]. This effectively increases
the ratio of specular to nonspecular received power, turning a Rayleigh or Rician
fading channel into a TWDP fading channel.

Wideband signal fading will likely exhibit TWDP fading characteristics for simi-
lar reasons. A wideband receiver has the ability to reject multipath components that
arrive with largely different propagation time delays [Rap02a], [Bra91]. This prop-
erty of a wideband receiver separates specular multipath components from other
nonspecular multipath waves. Under these circumstances, the ratio of specular to
nonspecular received power increases for a given propagation delay and a TWDP
fading channel may result.

5.4.5 Closing Remarks on TWDP Fading

Beyond the TWDP PDF, a three-wave with diffuse power (3WDP) PDF is the next
logical step. The value of such an analytically difficult PDF, however, is question-
able. Much like the previously discussed four-wave PDF, the central-limit theorem
would begin to dominate the behavior of an I-SLAC model, making it difficult to
distinguish between the different cases of a 3WDP PDF. For example, a 3WDP
PDF may be approximated by the TWDP PDF if the smallest of the three specular
voltage components is grouped with the nonspecular power. This approximation
would fail only if the nonspecular power were small compared to the third smallest
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specular component - yet such a situation implies that the nonspecular power is
so small that it could be ignored: A 3WDP PDF could then be approximated by
the three-wave PDF. Therefore, it is safe to say that the analytical expressions of
Equation (5.4.2) and Table 5.1 provide a near-complete description of the possible
envelope fading of complex voltages in an I-SLAC model.

5.5 Chapter Summary

In a randomly varying small-scale channel, the distribution of received signal power
or envelope dramatically affects the performance of a receiver. These fluctuations
are best described using a PDF, which characterizes all of the first-order statistics
of a channel. The following key points summarize the first-order analysis described
in this chapter:

Mean received power is one of the most fundamental first-order statistics in
channel modeling and measurement.

" For a U-SLAC model, the mean power of the channel is equal to the sum
of the powers carried by individual multipath waves.

" An I-SLAC model is strict-sense stationary.

" A U-SLAC model is ergodic if its scattering is heterogeneous.

" For a U-SLAC model with heterogeneous scattering, spatial averaging
and frequency averaging produce identical results for mean received power.

The canonical PDF generator of Equation (5.2.13) describes the distribution
of received envelope voltages for I-SLAC models.

" The generator is based on the reduced wave grouping and uses a charac-
teristic function approach.

" There are five closed-form solutions to the PDF generator.

" The simplest solutions have become popular in wireless engineering.

The two-wave with diffuse power (TWDP) PDF models the most general type
of fading behavior.

" This PDF has no closed-form solution.

" There are several techniques for approximating the TWDP PDF.

" The TWDP PDF contains Rayleigh, Rician, one-wave, and two-wave
PDFs as special cases.

" TWDP behavior can deviate substantially from Rayleigh or Rician PDFs.

Envelope PDF calculation completely characterizes the first-order power statistics
of a random radio channel. While useful, first-order statistics do not provide any
information as to how processes develop as a function of frequency and space. To
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understand the space-varying characteristics of random channels, we will further de-
velop our analysis of the 3D spatial channel and introduce the concept of multipath
angle spectrum. This is the subject of Chapter 6.

PROBLEMS

1. The following statistic, χ, is used to describe a frequency-varying I-SLAC model,
h̃(f):

χ(f1, f2, f3) = E
{
h̃(f1)h̃∗(f2)h̃(f3)

}
Demonstrate how it is possible to simplify the number of dependencies in this statistic.

2. You decide to measure local area power using two techniques. First, you measure
the spatial average of a narrowband channel, h̃()r). Then, you measure the frequency
average of a fixed channel, h̃(f). Explain a possible physical interpretation for the
multipath waves if the two averages do not agree.

3. Why are the following functions invalid for use as an envelope PDF?

a. fR(ρ) = 1

σ
√

2π
exp

(
− ρ2

2σ2

)
b. fR(ρ) = u(ρ− 1)− u(ρ− 3)

c. fR(ρ) = sn(ρ− 3)u(ρ)

d. fR(ρ) = sn2(ρ)u(ρ)

4. Transform the following envelope PDFs into power PDFs based on the relationship
p = ρ2:

a. Weibull PDF: fR(ρ) = a exp (−ap) u(p), a > 0

b. Half-Gaussian PDF: fR(ρ) = 1
σ

√
2
π

exp
(
− ρ2

2σ2

)
u(ρ)

c. Two-Wave PDF: fR(ρ) = 2ρ

π
√

4V 2
1 V

2
2 −(V 2

1 +V 2
2 −ρ2)2

, for |V1 − V2| ≤ ρ ≤ V1 + V2

d. Rician PDF: fR(ρ) = 2ρ
Pdif

exp
(

−ρ2−V 2
1

Pdif

)
I0

(
2V1ρ
Pdif

)
u(ρ)

e. Half Sinc-Squared PDF: fR(ρ) = 2V0sn2(V0ρ)u(ρ)

5. Transform the following power PDFs into envelope PDFs based on the relationship
p = ρ2:

a. Exponential: fP (p) = 1
P0

exp
(
− p
P0

)
u(p)

b. Half-Gaussian PDF: fP (p) = 1
σ

√
2
π

exp
(
− p2

2σ2

)
u(p)

c. Triangle PDF: fP (p) = 2(1− p)[u(p)− u(p− 1)]

d. Half Sinc-Squared PDF: fP (p) = 2P0sn2(P0p)u(p)

6. Recall the transmission line problem from previous engineering courses. A lossless
transmission line of length L = lλ and real impedance, Z0, terminates in a complex
load with impedance, Z̃L. This configuration is illustrated below:
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Voltage Probe

V f0 Csin(2 )� ZLZ0

L l= �

~

The transmission line is very long, and a voltage probe takes measurements at random
positions along the length of the line. Find an expression for the envelope PDF
measured by the probe in terms of l, Z0, and Z̃L.

7. Write a computer program to numerically compute any PDF from the I-SLAC

PDF generator of Equation (5.2.13). Use this program to graph the PDFs for the
following cases:

a. N = 4, V1 = V2 = V3 = V4 = 1V, Pdif = 1V2

b. N = 4, V1 = V2 = V3 = V4 = 1V, Pdif = 0

c. N = 4, V1 = V2 = 2V3 = 2V4 = 1V, Pdif = 0

d. N = 3, V1 = V2 = 2V3 = 1V, Pdif = 1V2

e. N = 3, V1 = 2V2 = 2V3 = 1V, Pdif = 1V2

8. Consider a local area propagation scenario where three equal-amplitude specu-

lar waves (V1 = V2 = V3 = 1V) are received in the presence of other diffuse multipath
waves with total power P0. We may can calculate this case by either grouping one of
the specular voltages with the diffuse power (a TWDP approximation) or using the
full 3WDP representation:

TWDP: V1 = V2 = 1V 3WDP: V1 = V2 = V3 = 1V
Pdif = P0 + 1V2 Pdif = P0

Evaluate and graph both the exact 3WDP and approximate TWDP envelope PDFs
for different values of P0. At which value of P0 does this approximation fail?

9. Use the Rayleigh PDF to calculate the following information about a Rayleigh fading
channel with average power Pdif:

a. What is the mean of the Rayleigh fading envelope?

b. What is the most likely value of the envelope?

c. What is the median of the envelope? (The median is the voltage, ρm, at which
Pr[R > ρm] =Pr[R < ρm] = 0.5.)

10. Analytically write and solve the generating integral for the Rician PDF. Hint: See
Appendix A.4 for formulas that help evaluate this integral.
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11. Prove that the following mathematical relationship holds for any positive values of
Ai: ∞∫

0

∞∫
0

x3ν

N∏
i=1

J0(Aiν)J0(νx) dν dx =

N∑
i=1

A2
i

Hint: Try applying some theorems learned in this chapter before computing any
integrals.

12. Prove that the Rician distribution may be approximated as a Gaussian distribution
for K � 1. (See Table A.3 in Appendix A.)

13. Which of the following descriptions of wave groupings will produce envelopes that
never fade to zero?

a. {Vi} = {4, 3, 2, 1}
b. {Vi} = {4, 2, 1}
c. {Vi} = {1, 3, 4, 10, 1}
d. {Vi} = {200, 1, 1} and Pdif = 0.1V2

14. Compute E {P} for the groups of waves in the previous problem.

15. Assume that N specular waves with equal amplitude are received by an an-

tenna. Test how the exact I-SLAC PDF compares with an approximation of the
PDF using the Rayleigh distribution of equal power. Graph the cases for N =
3, 4, 5, 7, 10, 15, and 20.
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5.A Envelope Characteristic Functions

In the study of PDFs, it is convenient to define a characteristic function, which is
the Fourier transform of the PDF [Pap91]. The standard mathematical definitions
for finding a characteristic function, ΦX(υ), from a PDF, fX(x), and vice versa are
given below:

ΦX(υ) =

+∞∫
−∞

fX(x) exp(−jυx) dx (5.A.1)

fX(x) =
1
2π

+∞∫
−∞

ΦX(υ) exp(jυx) dυ (5.A.2)

Characteristic functions are useful for studying the addition of independent random
variables. If random variables A, B, and C satisfy the relationship C = A+B and
A and B are independent, then their characteristic functions satisfy the relationship
ΦC(υ) = ΦA(υ)ΦB(υ) [Sta94].

Characteristic functions are also useful for studying the superposition of two
independent random voltages, such as those in the SLAC model. Since voltage, Ṽ , is
complex-valued, its characteristic function must be a double Fourier transform over
the joint PDF of the random in-phase, X , and quadrature, Y , voltage components
(Ṽ = X + jY ). This transformation is demonstrated below:

ΦXY (υx, υy) =

+∞∫
−∞

+∞∫
−∞

fXY (x, y) exp(−jυxx) exp(−jυyy) dx dy (5.A.3)

fXY (x, y) =
1
4π2

+∞∫
−∞

+∞∫
−∞

ΦXY (υx, υy) exp(jυxx) exp(jυyy) dυx dυy (5.A.4)

Starting with the basic envelope PDF, fR(ρ), as a function of only envelope, ρ, it
is possible to extend this PDF into a joint PDF using the relationship

fRΦ(ρ, φ) =
1
2πρ

fR(ρ) (5.A.5)

Equation (5.A.5) is a joint PDF, albeit in terms of envelope, ρ, and phase, φ,
variables instead of in-phase, x, and quadrature, y, variables. Equation (5.A.5)
assumes that the net phase, φ, is uniformly distributed, independent of ρ - consistent
with the I-SLAC model.

Rather than convert Equation (5.A.5) into an XY joint PDF, it is more conve-
nient to make a change of variables in the transform definition of Equation (5.A.3).
With the polar-coordinate substitutions x = −ρ cosφ, y = −ρ sinφ, and dx dy =
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ρ dρ dφ, Equation (5.A.3) becomes

ΦXY (υx, υy) =
1
2π

∞∫
0

2π∫
0

fR(ρ) exp(jυxρ cosφ) exp(jυyρ sinφ) dφ dρ (5.A.6)

Equation (5.A.6) may be grouped:

ΦXY (υ) =

∞∫
0

fR(ρ)


 1
2π

2π∫
0

exp [−jυρ cos(φ + φ0)] dφ


 dρ (5.A.7)

where υ =
√
υ2x + υ2y and tan(φ0) = υy/υx. The angle φ0 is unimportant, since the

integration of φ0 is over the entire period of the cosine function in Equation (5.A.7).
Thus, the characteristic function is solely dependent on the variable υ.

The bracketed term in Equation (5.A.7) is a standard definite integral that evalu-
ates to a zero-order Bessel function of the first kind [Gra94]. The final expression for
the transformation from envelope PDF to characteristic function is Equation (5.2.3).
Using a similar set of reductions, the reverse transformation from characteristic
function to envelope PDF becomes Equation (5.2.4). The only assumption made
in these transformations is the statistical independence and uniform distribution of
the complex voltage phase.


