The Practical Behavior of Various Edge Diffraction Formulas

Gregory D. Durgin, IEEE Senior Member
Georgia Institute of Technology
777 Atlantic Ave.
Atlanta, GA 30332-0250
Voice: 404-894-2951
Fax: 404-894-5935
Email: durgin@gatech.edu

Indexing Terms: diffraction, geometrical theory of diffraction, acoustic diffraction, terrain factors, radio propagation, wedges

Abstract

The scalar Knife-Edge Diffraction (KED) solution is a workhorse for RF and optics engineers who regularly encounter practical diffraction phenomena. Yet the approximate, polarization-independent KED result is formulated in a way that does not provide direct physical insight. In this article, we demonstrate how the KED formula contains similar underlying physics to other more rigorous half-screen diffraction solutions, allowing engineers to apply common geometrical theory of diffraction (GTD) formulations for all screen diffraction problems. The underlying geometrical behavior of the scalar KED solution sheds new light on these old problems, revealing why it is so useful for solving real-word problems in radio wave propagation.
1 Introduction

This article presents a uniquely congruent development of both the knife-edge diffraction (KED) and Sommerfeld half-plane diffraction formulas that helps engineers understand when and how to apply these solutions. Despite their similarity and utility in quantifying diffraction phenomena, the Sommerfeld and KED solutions are rarely mentioned in the same breath due to their vastly different formulations. To this point, Sommerfeld’s solution is an exact result that requires solving a set of integral equations under plane wave incidence [1]. The KED solution, on the other hand, results from an approximate evaluation of the Kirchhoff-Helmholtz integral theorem, which itself is evaluated for the approximate Kirchhoff boundary conditions of a blocking screen. However, the analysis in this paper clearly shows the interrelationship between the two solutions.

We build on the observations of Giovaneli in [2] to provide the diffraction pattern of the KED result and extend its existing usefulness [3]. Formulated from scalar diffraction theory, the KED result is polarization-independent, but can handle point-source radiators. Unlike the Sommerfeld result, it is surprisingly difficult to achieve a skewed angle-of-incidence KED solution. Multiple diffractions are also difficult to construct from KED, with numerous attempts that rely on correction factors and virtual sources reported in the research literature [4-7]. But KED is particularly powerful in one sense: its direct extrapolation of incident fields without relying on integral equations allows the KED approach to be used in the analysis of perturbations of the knife-edge solution. For example, Davis and Brown have used it to study the effects of random edge roughness on the half-screen diffracted field solution [8].

The parallel analysis of these classical results sheds some new light on old problems. Key results are Figures 3-5, which illustrate amplitude and phase behaviors of the solutions. The most profound result is Figure 7, which shows that the diffracted portion of the KED solution is precisely the geometric mean of the Sommerfeld
diffracted waves for parallel and perpendicular polarizations on normal incidence [9]. By demonstrating common underlying geometries in the Sommerfeld and KED results, we arrive at the common Geometrical Theory of Diffraction (GTD) formulation that achieves benefits of both. We conclude with an example of double terrain diffraction that serves to illustrate the differences and trade-offs between diffraction solutions. The ensuing physical understanding will help engineers choose which scenarios are more applicable to KED or Sommerfeld screen solutions.

2 Breaking Down Edge Diffraction Formulas

2.1 Knife-Edge Diffraction Formula

The KED problem is formulated for a semi-infinite half-plane in between a point source and an observation point, as shown in Figure 1. Thus, a line drawn from the source to the observation point will clear the diffracting knife edge by a distance d. A negative value of d implies obstruction. The solution for this case is the famous KED formula [1]:

$$E_{\odot} = \left(\frac{1+j}{2}\right) E_o \exp(-jk[ro + r]) \sqrt{\frac{2}{\pi}} F\left(-d\sin\phi, \sqrt{\frac{k}{2}\left(\frac{1}{ro} + \frac{1}{r}\right)}\right)$$

where k is wavenumber ($k = \frac{2\pi}{\lambda}$) and r, ro, d, and θ are geometrical terms summarized in Figure 1. $F(\cdot)$ is the Fresnel integral function:

$$F(a) = \int_a^\infty \exp\left(-j\tau^2\right) d\tau$$

The KED result presumes an isotropic radiator of the form

$$E_{oi} = \frac{E_o \exp(-jk[ro + r])}{k(ro + r)}$$

on the source-side of the screen. Equation (1) is an approximate result, independent of incident field polarization (the \odot-subscript is used in this work to denote a scalar
result). However it has proven to be resilient and useful for both optics and radio wave propagation.

There is a powerful geometrical interpretation of Equation (1) which allows it to be recast in terms of distances between the line-of-sight (LOS) path, $r + r_o$, and the total length of the two line segments formed from source-to-edge-to-observation. This difference may be expressed mathematically as Δr:

$$\Delta r = \sqrt{r_o^2 + d'^2} + \sqrt{r^2 + d'^2} - (r + r_o)$$

$$\approx r_o \left(1 + \frac{d'^2}{2r_o^2}\right) + r \left(1 + \frac{d'^2}{2r^2}\right) - (r + r_o)$$

$$\approx \frac{d'^2}{2} \left(\frac{1}{r_o} + \frac{1}{r}\right) \quad (4)$$

Interestingly, the square-root of this term (multiplied by k) is precisely the argument of the Fresnel integral function that describes the principle amplitude changes in Equation (1). For a fixed difference in path length Δr, there are two sets of solutions for modified clearance distance d' that will maintain a constant Fresnel integral function argument:

$$d' = \pm \sqrt{\frac{2r_o r \Delta r}{r + r_o}} \quad (5)$$

Collecting either the positive or negative roots in Equation (5) produces a set of d' as a function of r and r_o that result in constant-amplitude electric field at the receiver location. Furthermore, based on the geometrical definition in Figure 1, we can see that the set of all d' satisfying Equation (5) for a given source-observation approximates an ellipse whose foci are the source and observation points.

Although ideal semi-infinite diffracting screens are hard to find in reality, radio engineers commonly use the KED result to approximate the effects of partial blockages in wireless links. Office buildings, trees, houses, terrain, and many other things have all been modeled as screens for the purposes of UHF and microwave radio diffraction
In KED, the shape and orientation of the screen have only a secondary effect on the solution anyway. Just consider Figure 1, where the screen can be oriented at nearly any angle and still produce nearly the same field solution in Equation (1), provided the edge produces the same clearance distance at d' for a given r and r_o.

In designing point-to-point microwave links, diffraction effects are minimized by ensuring enough clearance distance between the link LOS path and the nearest diffracting element. To facilitate link design, ellipsoids of constant path difference are drawn around the link, with one focus at the transmitter and one focus at the receiver. This geometry is illustrated in Figure 2. The ellipsoids of interest occur for path differences

$$\text{Ellipsoid } n: \Delta r = \frac{n\lambda}{2} \text{ for all points on ellipse } \quad (6)$$

The regions between these constant ellipsoids are Fresnel zones, with the nth Fresnel zone defined as the region between the $(n-1)$th and nth ellipsoids of half-wavelength path difference. Thus, the nth Fresnel zone corresponds to clearance distances in the following range:

$$\sqrt{\frac{r_oor(n-1)\lambda}{r+r_o}} < (d')_n < \sqrt{\frac{r_oorn\lambda}{r+r_o}} \quad (7)$$

The practical significance of the Fresnel zones can be shown by magnifying the KED solution in Figure 2 for regions of small clearance. Generally, odd zones are regions of constructive interference and even zones are regions of destructive interference.

2.2 Sommerfeld Solution for the PEC Edge

The exact Sommerfeld solution of the PEC half-plane problem depends on the polarization of the incident field. In this discussion, perpendicular (\perp) polarization refers to an incident plane wave with electric field perpendicular to the plane of incidence (the sheet of paper in Figure 1); the electric field vector will have only a z-component. In diffraction literature, this case is often called soft polarization – an artifact of acoustic
propagation theory. *Parallel (∥)* polarization refers to an incident plane wave with electric field parallel to the plane of incidence; the electric field vector will have only \(x\) and \(y\) components. This case is often called *hard polarization*.

Marking three regions of space in Figure 1 helps the discussion of the Sommerfeld solution. The *reflection region* is the area defined by \(0 \leq \phi < 180^\circ - \phi_i\); in this region, geometrical optics predicts the total field to be the superposition of two uniform plane waves – the incident and reflected waves. The *incident region* is the area defined by \(180^\circ - \phi_i \leq \phi \leq 180^\circ + \phi_i\); in this region, geometrical would predicts the total field to be only the incident plane wave. Finally, the *shadow region* is the area defined by \(180^\circ + \phi_i < \phi < 360^\circ\); geometrical optics predicts the total field to be 0 in this region, as the incident wave has been shielded entirely by the PEC. The exact total field solution for both types of polarization, along with the mathematical forms of the incident waves, are summarized in Table 1 using the cylindrical-coordinate geometry in Figure 1 [1].

The Sommerfeld solution is a convenient construction, but does not provide immediate intuition or insight into the wave propagation. To remedy this, let us use the following formulation for total electric field \(\vec{E}\):

\[
\vec{E} = \vec{E}_{\text{GO}} + \vec{E}_d \quad (8)
\]

where \(\vec{E}_{\text{GO}}\) is the geometrical optics solution in Table 1 and \(\vec{E}_d\) is the *diffracted field* solution. The amplitudes and phases of the total \(\vec{E}\), geometrical optics \(\vec{E}_{\text{GO}}\), and diffracted \(\vec{E}_d\) fields for \(\perp\)-incidence are illustrated in Figure 3, demonstrating how the discontinuities in the diffracted field exactly counterbalance the discontinuities in the geometrical optics field. Note the interesting phase behavior in the diffracted field; the phase tapers linearly in a circular pattern away from the screen edge. The same behavior is, of course, present in the diffracted \(H_z\) fields for \(\parallel\)-incidence, which is shown in Figure 4. The results confirm Keller’s initial GTD assumption that wave diffraction effects are approximately localized to material discontinuities [13].
2.3 Comparing KED with the Sommerfeld Solution

It is a useful exercise to transform the KED solution into the same geometry as the Sommerfeld half-plane problem and perform the same geometrical optics + diffracted wave decomposition of fields as Equation (8). Keeping in mind the KED solution is valid only on one side of the diffracting screen, Figure 5 illustrates the amplitudes and phases of total, geometrical optics, and diffracted fields of KED. Two immediate behaviors become evident: 1) KED diffraction exhibits a localized wave that emanates from the edge and superimposes onto the total geometrical optics field, and 2) due to the KED approximations, there is a “fish-eye” distortion in the phase of this localized wave that becomes severe at angles-of-observation approaching $\phi \to 180^\circ$ and $\phi \to 360^\circ$. The amplitude of the localized wave, however, still satisfies Kirchhoff boundary conditions by approaching zero on the plane of the half-screen.

3 GTD Interpretation

3.1 Sommerfeld Asymptotic Expansion

We will concentrate on \perp-incidence for our asymptotic analysis, as the \parallel-incidence follows similarly. First, note that the diffracted field in this formulation may be written as

$$E_{dz} = \frac{E_o \exp\left(\frac{j\pi}{4}\right)}{\sqrt{\pi}} \left[\mp \exp(jk\rho \cos(\phi - \phi_i)) F\left(\pm \sqrt{2k\rho \cos\left(\frac{\phi - \phi_i}{2}\right)}\right) \right. \\
\left. \mp \exp(jk\rho \cos(\phi + \phi_i)) F\left(\pm \sqrt{2k\rho \cos\left(\frac{\phi + \phi_i}{2}\right)}\right) \right]$$

where the three signs mark the three discontinuous regions that exist in the geometrical optics solution that persist when subtracted from the Sommerfeld solution in
Table 1. Equation (9) makes use of the identity

\[F(a) = \sqrt{\pi} \exp\left(-\frac{j\pi}{4}\right) - F(-a) \] \hspace{1cm} (10)

which cancels subtracted plane wave terms so that the solution may always be expressed in terms of Fresnel integral functions.

Half-plane formulations are convenient in asymptotic analysis, since a working expansion can be achieved simply by integrating the Fresnel integral function by parts repeatedly:

\[F(a) = -\frac{j}{2a} \exp(-ja^2) + \frac{1}{4a^3} \exp(-ja^2) - \frac{1}{12} \int_a^\infty \frac{1}{x^4} \exp(-jx^2) \, dx \] \hspace{1cm} (11)

This method does not get any closer to a closed-form result for the integral, but we have generated a series expansion with respect to \(1/a\). Keeping only the first term in Equation (11) and ignoring the higher-order behavior, the diffracted field of Equation (9) may be written as

\[E_{dz}(\rho, \phi) \approx E_o \frac{\exp(-jk\rho)}{\sqrt{k\rho}} \left[\frac{\exp\left(-\frac{j\pi}{4}\right)}{2\sqrt{2\pi}} \left[\sec\left(\frac{\phi - \phi_i}{2}\right) - \sec\left(\frac{\phi + \phi_i}{2}\right) \right] \right] \] \hspace{1cm} (12)

which should be valid for arguments of the Fresnel integral function corresponding to \(a > 1\) [14]. The approximate diffracted field now has taken on the form of a cylindrical wave emanating from the diffracting edge. Furthermore, there is a \(\phi\)-varying pattern to this wave that matches the Keller GTD screen diffraction coefficient [13].

The diffraction pattern in Equation 12 is an accurate approximation when the cylindrical edge wave superimposes atop the geometrical optics wave, both of which are easy to construct. The approximation only fails close-in to either the shadow or reflection boundary, where the argument of the approximated Fresnel integral functions becomes small. In fact, this condition – where Fresnel argument \(a \leq 1\) – defines a pair of parabolic regions around the shadow and reflection boundaries. As
the observation point moves farther from the diffracting edge, the region about these boundaries where Equation 12 is invalid becomes smaller relative to the distance from the edge. The uniform theory of diffraction correction to GTD, as originally formulated by Kouyoumjian and Pathak, can be used to improve the solution within these parabolic regions [15].

Note that a diffraction coefficient for ∥-polarization follows similarly; both coefficients are summarized in Table 2.

3.2 KED Asymptotic Expansion

Proceeding in a similar fashion, we may subtract out the geometrical optics portion of the KED solution from Equation (1) over the region $\phi < \phi_i + \pi$ to achieve the diffracted field:

$$E_d = \mp \sqrt{\frac{2}{\pi}} \left(\frac{1 + j}{2} \right) \frac{E_o \exp(-jk(r_o + r))}{k(r + r_o)} F\left(\pm d \sin \phi_i \sqrt{\frac{k}{2}} \left(\frac{1}{r_o} + \frac{1}{r} \right) \right)$$

(13)

where the top signs are valid for the incidence region ($\phi < \phi_i + \pi$) and the bottom signs are valid for the shadowed region ($\phi > \phi_i + \pi$). Based on the geometry of the problem, we may recast this in terms of the path length difference Δr defined in Equation (4):

$$E_d(\rho, \phi) = \mp \sqrt{\frac{2}{\pi}} \left(\frac{1 + j}{2} \right) \frac{E_o \exp(-jk(\rho_o + \rho - \Delta r))}{k(\rho_o + \rho - \Delta r)} F\left(\pm \sqrt{k\Delta r} \right)$$

(14)

Using the same expansion for the Fresnel integral function as in Equation (10) we may write the approximate diffracted field as

$$E_d(\rho, \phi) \approx \frac{E_o}{k\rho_o} \exp(-jk\rho_o) \frac{\exp(-jk\rho)}{\sqrt{k\rho}} \sqrt{\frac{\rho_o}{\rho_o + \rho}} \exp\left(-\frac{j\pi}{4} \right) \frac{\sqrt{\rho_0}(\rho_0 + \rho)}{(\rho_o + \rho - \Delta r)\sqrt{\Delta r}}$$

(15)

The diffraction coefficient (all of the leftover terms in the solution) should be relatively insensitive to the source distance ρ_o from the edge, as GTD would predict. Thus, we
may take the limit as $\rho_o \to \infty$, which would correspond to plane-wave incidence:

$$D_o(\phi, \phi_i) = \frac{-1}{2\sqrt{\pi}} \exp\left(-j \frac{\pi}{4}\right) \sqrt{\frac{\rho}{\Delta r}} \quad (16)$$

This coefficient resembles one obtained by Giovaneli in [2]. Based on the plane wave geometry, apply the law-of-sines in Figure 1 to simplify the diffracted wave solution [9]:

$$\sqrt{\frac{\rho}{\Delta r}} = \sqrt{\frac{2r \rho}{d^2 \sin^2 \phi_i}} = \frac{1}{|\sin(\phi - \phi_i)|} \sqrt{\frac{2\sin \phi}{\sin \phi_i}} \quad (17)$$

After substitutions and simplifications, the diffraction coefficient may be expressed solely as a function of angular geometry. The end result is summarized in Table 2. Using this method of derivation, the KED diffraction coefficient differs from an alternative, normal-incident coefficient derived by Bertoni [16]. Bertoni’s coefficient more closely resembles Felsen’s GTD solution for a perfect absorber [17].

3.3 Extended GTD Formulation

Normal-incidence diffraction coefficients may be extended to skewed incidence, although the polarization effects can be difficult to track. Below is a generic algorithm for calculating GTD ray power for a variety of edge-diffraction problems:

1. Define the incident wavefront in terms of geometrical optics, tracking principle radii of curvature along the \parallel-incident and \perp-incident directions with respect to the diffracting edge (ρ_\parallel and ρ_\perp, respectively):

 $$\vec{E}_i(\vec{r}) = E_o \hat{e}_i \sqrt{\frac{\rho_\perp \rho_\parallel}{(s + \rho_\perp)(s + \rho_\parallel)}} \exp(-jks) \quad s = ||\vec{r} - \vec{r}_o||$$

 For illumination by realistic point sources, $\rho_\parallel = \rho_\perp$.

2. Locate the point on a diffracting edge \vec{r}_d that satisfies $\theta_d = \theta_i$ in Figure 6 (angle of diffracted ray equals angle of incident ray) and evaluate the incident field here, $\vec{E}_i(\vec{r}_d)$.
3. Calculate the unitless dyadic diffraction coefficient for the diffracting element based on geometry and material properties.

4. Construct the diffracted wave solution using geometrical principles:

\[
\vec{E}_d(\vec{r}) = \frac{\vec{E}_i(\vec{r}_d) \cdot \vec{D}(\phi, \phi_i)}{\sin \theta_i \sqrt{k s}} \sqrt{\frac{\rho_\perp}{\rho_\perp + s}} \exp (-j k s) \quad s = \|\vec{r} - \vec{r}_d\| \tag{18}
\]

This is the wave that adds to the Geometrical Optics solution to provide an estimate of diffracted field.

The key to this formulation is the dyadic diffraction coefficient, which takes the following form:

\[
\vec{D}(\phi, \phi_i) = D_\perp(\phi, \phi_i) \hat{u}_\perp \hat{v}_\perp + D_\parallel(\phi, \phi_i) \hat{u}_\parallel \hat{v}_\parallel \tag{19}
\]

The coefficient in Equation (19) is a dyad because of the pair of vectors that appears in the equation, representing an operation that converts a vector to another vector \[18\]. When applying the dot-product of incident field vector to the dyadic diffraction coefficient, the product is taken with the leftward unit vectors and the result is applied as a coefficient to the rightward unit vectors. Equation (19) collapses to a single scalar value when KED or similarly acoustic diffraction is applied.

To compute the unit-vector decompositions for polarization and direction of travel, refer to Figure 6. This problem is aligned so that the \(z\)-axis coincides with the diffracting edge. Thus, we may write unit vectors for the incident direction of propagation \(\hat{k}_i\) and the diffracted direction of propagation \(\hat{k}_d\) as

\[
\hat{k}_i = -\sin \theta_i \cos \phi_i \hat{x} - \sin \theta_i \sin \phi_i \hat{y} - \cos \theta_i \hat{z} \tag{20}
\]

\[
\hat{k}_d = \sin \theta_d \cos \phi_d \hat{x} + \sin \theta_d \sin \phi_d \hat{y} + \cos \theta_d \hat{z} \tag{21}
\]

The unit vectors \(\hat{u}_\perp\) and \(\hat{u}_\parallel\) are defined to be the perpendicular and parallel directions of polarization for the incident wave and the unit vectors \(\hat{v}_\perp\) and \(\hat{v}_\parallel\) are defined
to be the respective directions of polarization for the diffracted wave. With these definitions, we may write the following relationships:

\[
\hat{u}_\parallel = \frac{\hat{z} \times \hat{k}_i}{\|\hat{z} \times \hat{k}_i\|} \quad \hat{u}_\perp = \hat{k}_i \times \hat{u}_\parallel \quad \hat{v}_\parallel = \frac{\hat{z} \times \hat{k}_d}{\|\hat{k}_d \times \hat{z}\|} \quad \hat{v}_\perp = \hat{k}_d \times \hat{v}_\parallel
\]

Though still cumbersome, this geometrical formulation dramatically simplifies the relationship between polarization and diffraction coefficients. This algorithm works well for incident wavefronts that can be described by simple geometrical optics expressions; for incident waves with higher-order field structure, it may be necessary to apply slope diffraction coefficients for increased accuracy [19].

The geometry of polarization-tracking is unnecessary if the scalar KED diffraction coefficient is used. For this case, the dot product of incident field vector and dyadic diffraction coefficient in Equation (19) reduces to a scalar multiplication of field amplitude and KED diffraction coefficient.

3.4 Comparison of the Diffraction Coefficients

In Figure 7, the graph GTD diffracted power of both Sommerfeld-\(\perp\) and -\(\parallel\) incidence PEC waves is shown, with each normalized against the KED GTD coefficient for the same observation angle; incidence angle is at \(\phi_i = 90^\circ\). Notice that for observations near the shadow boundary, all GTD coefficients are nearly identical, independent of incident angle. When the observation point drops deeper into the shadow region (\(\phi \rightarrow 360^\circ\)), the \(\parallel\)-polarization PEC result leads to much more diffracted power than the \(\perp\)-polarization. The converse is true for observations made close to the open aperture in the problem (\(\phi \rightarrow 180^\circ\)).

Perhaps most interestingly, the normal-incident KED diffraction coefficient is an exact dB-average of the two PEC half-plane coefficients across the entire observation area. In the linear scale, the KED diffraction coefficient is then the geometric mean of the two Sommerfeld-based coefficients:

\[
|D_\phi(\phi, \pi/2)|^2 = \left| D_{\perp}(\phi, \pi/2) \right| \left| D_{\parallel}(\phi, \pi/2) \right|
\]

(22)
for all observation angles $180^\circ \leq \phi \leq 360^\circ$. Despite its approximations, the KED coefficient represents a profoundly useful middle-ground in diffraction problems where polarization or screen composition is unknown. Even more bizarre is that by forcing KED into a geometrical framework, the problematic phase behavior near the plane of the screen is repaired.

Felsen’s GTD coefficient $D_\phi^{(F)}(\phi, \phi_i)$ for a perfect absorbing half-plane, included in Table 2 and Figure 7 for comparison, also exhibits a blend of behavior for both polarizations of the PEC half-plane – but in an entirely different manner than the KED-based result. Independent of incident angle ϕ_i, the Felsen coefficient resembles Sommerfeld-\perp when $\phi \to 180^\circ$ and resembles Sommerfeld-\parallel when $\phi \to 360^\circ$. Unlike the KED coefficient, the Felsen coefficient does not approach zero on the plane of the screen, thereby violating Kirchhoff boundary conditions. The Felsen coefficient does, however, maintain reciprocity by remaining invariant under exchange of the incident angle ϕ_i and the observation angle ϕ; the underlying KED diffracted wave exhibits non-reciprocal behavior for certain combinations of incident and observation angles.

4 Example: FM Radio Over Terrain

Now let us illustrate how the differences between the diffraction coefficients affect practical radio wave propagation. WREK transmits a 91.1 MHz FM radio signal with effective isotropic radiated power of EIRP=54.0 dBW (about 250 kW). To reach one coverage area, the station must rely on double diffraction over the top of two terrain peaks of equal altitude that can be modeled as 90° wedges according to the geometry in Figure 8. Calculation of received power using the different diffraction coefficients will illustrate their respective trade-offs.

Let us calculate all dimensions, referencing all incident angles to the reflective
facets of the two wedges in Figure 8. At point A, the incident wave power is

$$\left(\frac{P_R}{G_R} \right)_A = \text{EIRP} \frac{\lambda^2}{16\pi^2 r_1^2}$$

When the diffraction coefficient is applied and the first diffracted wave is propagated forward, the wave power at point B is

$$\left(\frac{P_R}{G_R} \right)_B = \text{EIRP} \frac{\lambda^3 \left| D(\phi_2, \phi_1) \right|^2}{32\pi^3 r_1 r_2 (r_1 + r_2)}$$

Applying the next diffraction coefficient (disregarding any additional reflections and interactions along the way), the second diffracted wave propagates forward to the receiver location for a received power of

$$\left(\frac{P_R}{G_R} \right)_{RX} = \text{EIRP} \frac{\lambda^4 \left| D(\phi_2, \phi_1) \right|^2 \left| D(\phi_4, \phi_3) \right|^2}{64\pi^4 r_1 r_2 r_3 (r_1 + r_2 + r_3)}$$

The solution in Equation (25) assumes that the second peak lies outside the transition region that surrounds the shadow boundary of the first diffraction peak. Table 3 presents the output of this calculation for a variety of different diffraction coefficients.

Of course, all double diffraction results in Table 3 yield significantly lower received powers when compared to the -11.9 dBm received in a LOS link of comparable transmitter-receiver separation distance. Note, however, the difference between the received powers for horizontal (\perp) and vertical (\parallel) polarizations when the peaks are modeled as diffracting PEC screens; they yield received powers of -85.5 and -80.2 dBm, respectively. The significant difference of 5.3 dB reveals a strong polarization dependence. This difference increases to 12.4 dB when the terrain is modeled as PEC wedges, but the average of the two polarization states is almost identical to the average screen-based results.

From these results we can gather that replacement of wedges with screens in a diffraction problem de-emphasizes polarization dependence, but does not significantly change the average received power [16]. Furthermore, the polarization-averaged received power for the PEC screens of -82.9 dBm is almost identical to the -82.4 dBm of
received power predicted by the KED blockage coefficient. The Felsen screen absorber coefficient also predicts a similar received power of -83.5 dBm.

5 Conclusions

Geometrical comparisons of half-screen diffraction problems provide engineers practical insight into the underlying physics and application of diffraction formulas. The GTD or UTD formulations of most screen diffraction problems are often preferred methods for constructing field solutions, rather than their classical formulations. In fact, this study showed that by forcing KED into a GTD-style framework, some of the skewed behavior is actually repaired.

Based on the presented analysis, scalar KED-type diffraction solutions are preferable if the polarization of the radiator is unknown or unpredictable, or if the composition of the diffracting screen is unknown; KED-based GTD provides valuable middle-of-the-road behavior when compared to the range of possible behaviors in other diffraction coefficients. However, if the diffracting edge is truly straight, its composition is highly conductive, and the incident polarization is known, then the Sommerfeld-based GTD or UTD solutions should be applied.

6 Acknowledgements

This study was based on a lecture series in Georgia Tech’s ECE 8833: Advanced Topics in Analytical Electromagnetics course. Many thanks to class members Kiruthika Deveraj, Chris Edmonds, Josh Griffin, Girish Jain, Lorne Liechty, Ryan Pirkl, and Usman Saed for their participation. Special thanks to Prof. Michael Neve for some extremely helpful ideas, feedback, and encouragement. Part of this content was also prepared (many years ago) as part of a class research project under Prof. Gary S. Brown of Virginia Tech, to whom the author is repeatedly indebted.
7 References

Figure 1: Geometry used for diffraction by a thin semi-infinite plane (i.e. a “knife edge”).
Figure 2: Geometry of Fresnel zone ellipsoids clearing obstacles in a microwave link. The Fresnel zones are labeled moving from the first ellipsoid outward.
Figure 3: Amplitude and phase of the \perp-incident Sommerfeld solution for an incident plane wave at $\phi_i = 60^\circ$. All amplitudes are graphed in dB with respect to the magnitude of the incident plane wave.
Figure 4: Amplitude and phase of the \parallel-incident Sommerfeld solution for an incident plane wave at $\phi_i = 60^\circ$. All amplitudes are graphed in dB with respect to the magnitude of the incident plane wave.
Figure 5: Amplitude and phase of the knife-edge diffraction solution for an incident plane wave at $\phi_i = 60^\circ$. All amplitudes are graphed in dB with respect to the magnitude of the incident plane wave.
Figure 6: Geometry of polarization, directions of propagation, and orientation in an oblique edge-diffraction problem. Unit vectors \hat{k}_i, \hat{u}_\perp, and \hat{z} are co-planar as are \hat{k}_d, \hat{v}_\perp, and \hat{z}.
Figure 7: Comparison of GTD coefficients with respect to the KED-based coefficient across observation angles $180^\circ \leq \phi \leq 360^\circ$. Graphs are for $\phi_i = 45^\circ$, 90° (normal), and 135° incidence.
Figure 8: Example of FM radio wave propagation that must diffract over two terrain peaks.
Total Field Solution for \(\perp \)-Polarization

\[
E_z = \frac{E_o \exp\left(\frac{j\pi}{4}\right)}{\sqrt{\pi}} \left[\exp(jk\rho \cos(\phi - \phi_i)) F\left(-\sqrt{2k\rho \cos\left(\frac{\phi - \phi_i}{2}\right)}\right) - \exp(jk\rho \cos(\phi + \phi_i)) F\left(-\sqrt{2k\rho \cos\left(\frac{\phi + \phi_i}{2}\right)}\right) \right] \\
H_\rho = \frac{E_o \exp\left(j \frac{\pi}{8} - k\rho\right)}{\sqrt{n\pi}} \left[\sin(\phi - \phi_i) G\left(-\sqrt{2k\rho \cos\left(\frac{\phi - \phi_i}{2}\right)}\right) - \sin(\phi + \phi_i) G\left(-\sqrt{2k\rho \cos\left(\frac{\phi + \phi_i}{2}\right)}\right) + j \sqrt{\frac{2}{k\rho}} \sin \frac{\phi_i}{2} \cos \frac{\phi}{2} \right] \\
H_\phi = \frac{E_o \exp\left(j \frac{\pi}{8} - k\rho\right)}{\sqrt{n\pi}} \left[\cos(\phi - \phi_i) G\left(-\sqrt{2k\rho \cos\left(\frac{\phi - \phi_i}{2}\right)}\right) - \cos(\phi + \phi_i) G\left(-\sqrt{2k\rho \cos\left(\frac{\phi + \phi_i}{2}\right)}\right) - j \sqrt{\frac{2}{k\rho}} \sin \frac{\phi_i}{2} \sin \frac{\phi}{2} \right]
\]

Incident Wave: \(E_z = E_o \exp(jk\rho \cos(\phi - \phi_i)) \)
GO Reflection: \(E_z = -E_o \exp(jk\rho \cos(\phi + \phi_i)) \)

Total Field Solution for ||-Polarization

\[
H_z = \frac{E_o \exp\left(\frac{j\pi}{4}\right)}{\sqrt{\pi}} \left[\exp(jk\rho \cos(\phi - \phi_i)) F\left(-\sqrt{2k\rho \cos\left(\frac{\phi - \phi_i}{2}\right)}\right) + \exp(jk\rho \cos(\phi + \phi_i)) F\left(-\sqrt{2k\rho \cos\left(\frac{\phi + \phi_i}{2}\right)}\right) \right] \\
E_\rho = \frac{E_o \exp\left(j \frac{\pi}{8} - k\rho\right)}{\sqrt{n\pi}} \left[-\sin(\phi - \phi_i) G\left(-\sqrt{2k\rho \cos\left(\frac{\phi - \phi_i}{2}\right)}\right) - \sin(\phi + \phi_i) G\left(-\sqrt{2k\rho \cos\left(\frac{\phi + \phi_i}{2}\right)}\right) + j \sqrt{\frac{2}{k\rho}} \sin \frac{\phi_i}{2} \cos \frac{\phi}{2} \right] \\
E_\phi = \frac{E_o \exp\left(j \frac{\pi}{8} - k\rho\right)}{\sqrt{n\pi}} \left[-\cos(\phi - \phi_i) G\left(-\sqrt{2k\rho \cos\left(\frac{\phi - \phi_i}{2}\right)}\right) - \cos(\phi + \phi_i) G\left(-\sqrt{2k\rho \cos\left(\frac{\phi + \phi_i}{2}\right)}\right) - j \sqrt{\frac{2}{k\rho}} \cos \frac{\phi_i}{2} \cos \frac{\phi}{2} \right]
\]

Incident Wave: \(H_z = \frac{E_o \exp(jk\rho \cos(\phi - \phi_i))}{\eta} \)
GO Reflection: \(H_z = \frac{E_o \exp(jk\rho \cos(\phi + \phi_i))}{\eta} \)

Fresnel Integral Function:
\(F(a) = \int_a^{\infty} \exp(-j\tau^2) d\tau \)

Helper Function:
\(G(a) = \exp(ja^2)F(a) \)
Table 2: Summary of the half-plane GTD diffraction coefficients.

<table>
<thead>
<tr>
<th>Solution Type</th>
<th>Diffraction Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommerfeld-⊥</td>
<td>$D_\perp(\phi, \phi_i) = -\frac{\exp(-j\pi\frac{3}{4})}{2\sqrt{2\pi}} \left[\sec\left(\frac{\phi - \phi_i}{2}\right) - \sec\left(\frac{\phi + \phi_i}{2}\right) \right]$</td>
</tr>
<tr>
<td>Sommerfeld-∥</td>
<td>$D_\parallel(\phi, \phi_i) = -\frac{\exp(-j\pi\frac{3}{4})}{2\sqrt{2\pi}} \left[\sec\left(\frac{\phi - \phi_i}{2}\right) + \sec\left(\frac{\phi + \phi_i}{2}\right) \right]$</td>
</tr>
<tr>
<td>Felsen Absorber</td>
<td>$D^{(F)}_\diamond(\phi, \phi_i) = -\frac{\exp(-j\pi\frac{3}{4})}{\sqrt{2\pi}} \left[\frac{1}{\pi -</td>
</tr>
<tr>
<td>KED Blockage</td>
<td>$D_\diamond(\phi, \phi_i) = -\frac{\exp(-j\pi\frac{3}{4})}{\sqrt{2\pi}}</td>
</tr>
</tbody>
</table>

Table 3: Examples of received power calculated for the FM radio double diffraction example.

<table>
<thead>
<tr>
<th>Diffraction Treatment</th>
<th>Received Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line-of-Sight Link</td>
<td>-11.9</td>
</tr>
<tr>
<td>PEC Half Plane-⊥</td>
<td>-85.5</td>
</tr>
<tr>
<td>PEC Half Plane-∥</td>
<td>-80.2</td>
</tr>
<tr>
<td>PEC Wedge-⊥</td>
<td>-88.8</td>
</tr>
<tr>
<td>PEC Wedge-∥</td>
<td>-76.4</td>
</tr>
<tr>
<td>Felsen Absorber</td>
<td>-83.5</td>
</tr>
<tr>
<td>KED Blockage</td>
<td>-82.4</td>
</tr>
</tbody>
</table>