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Abstract

The scalar Knife-Edge Diffraction (KED) solution is a workhorse for RF and optics

engineers who regularly encounter practical diffraction phenomena. Yet the approx-

imate, polarization-independent KED result is formulated in a way that does not

provide direct physical insight. In this article, we demonstrate how the KED formula

contains similar underlying physics to other more rigorous half-screen diffraction so-

lutions, allowing engineers to apply common geometrical theory of diffraction (GTD)

formulations for all screen diffraction problems. The underlying geometrical behavior

of the scalar KED solution sheds new light on these old problems, revealing why it is

so useful for solving real-word problems in radio wave propagation.
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1 Introduction

This article presents a uniquely congruent development of both the knife-edge diffrac-

tion (KED) and Sommerfeld half-plane diffraction formulas that helps engineers un-

derstand when and how to apply these solutions. Despite their similarity and utility

in quantifying diffraction phenomena, the Sommerfeld and KED solutions are rarely

mentioned in the same breath due to their vastly different formulations. To this point,

Sommerfeld’s solution is an exact result that requires solving a set of integral equa-

tions under plane wave incidence [1]. The KED solution, on the other hand, results

from an approximate evaluation of the Kirchhoff-Helmholtz integral theorem, which

itself is evaluated for the approximate Kirchhoff boundary conditions of a blocking

screen. However, the analysis in this paper clearly shows the interrelationship between

the two solutions.

We build on the observations of Giovaneli in [2] to provide the diffraction pattern

of the KED result and extend its existing usefulness [3]. Formulated from scalar

diffraction theory, the KED result is polarization-independent, but can handle point-

source radiators. Unlike the Sommerfeld result, it is surprisingly difficult to achieve

a skewed angle-of-incidence KED solution. Multiple diffractions are also difficult to

construct from KED, with numerous attempts that rely on correction factors and

virtual sources reported in the research literature [4-7]. But KED is particularly

powerful in one sense: its direct extrapolation of incident fields without relying on

integral equations allows the KED approach to be used in the analysis of perturbations

of the knife-edge solution. For example, Davis and Brown have used it to study the

effects of random edge roughness on the half-screen diffracted field solution [8].

The parallel analysis of these classical results sheds some new light on old prob-

lems. Key results are Figures 3-5, which illustrate amplitude and phase behaviors of

the solutions. The most profound result is Figure 7, which shows that the diffracted

portion of the KED solution is precisely the geometric mean of the Sommerfeld

2



diffracted waves for parallel and perpendicular polarizations on normal incidence [9].

By demonstrating common underlying geometries in the Sommerfeld and KED re-

sults, we arrive at the common Geometrical Theory of Diffraction (GTD) formulation

that achieves benefits of both. We conclude with an example of double terrain diffrac-

tion that serves to illustrate the differences and trade-offs between diffraction solu-

tions. The ensuing physical understanding will help engineers choose which scenarios

are more applicable to KED or Sommerfeld screen solutions.

2 Breaking Down Edge Diffraction Formulas

2.1 Knife-Edge Diffraction Formula

The KED problem is formulated for a semi-infinite half-plane in between a point

source and an observation point, as shown in Figure 1. Thus, a line drawn from the

source to the observation point will clear the diffracting knife edge by a distance d.

A negative value of d implies obstruction. The solution for this case is the famous

KED formula [1]:

E¦ =
(

1 + j

2

)
Eo exp(−jk[ro + r])

k(r + ro)

√
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π
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−d sin φi

√
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2

(
1
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+
1

r

)
 (1)

where k is wavenumber (k = 2π
λ

) and r, ro, d, and θ are geometrical terms summarized

in Figure 1. F(·) is the Fresnel integral function:

F(a) =

∞∫

a

exp
(
−jτ 2

)
dτ (2)

The KED result presumes an isotropic radiator of the form

E¦i =
Eo exp(−jk[ro + r])

k(ro + r)
(3)

on the source-side of the screen. Equation (1) is an approximate result, independent

of incident field polarization (the ¦-subscript is used in this work to denote a scalar
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result). However it has proven to be resilient and useful for both optics and radio

wave propagation.

There is a powerful geometrical interpretation of Equation (1) which allows it to

be recast in terms of distances between the line-of-sight (LOS) path, r + ro, and the

total length of the two line segments formed from source-to-edge-to-observation. This

difference may be expressed mathematically as ∆r:

∆r =

source-to-edge︷ ︸︸ ︷√
r2
o + d′2 +

edge-to-observation︷ ︸︸ ︷√
r2 + d′2 −

LOS path︷ ︸︸ ︷
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≈ ro

(
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d′2

2r2
o

)
+ r

(
1 +

d′2

2r2

)
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≈ d′2

2

(
1

ro

+
1

r

)
(4)

Interestingly, the square-root of this term (multiplied by k) is precisely the argu-

ment of the Fresnel integral function that describes the principle amplitude changes

in Equation (1). For a fixed difference in path length ∆r, there are two sets of solu-

tions for modified clearance distance d′ that will maintain a constant Fresnel integral

function argument:

d′ = ±
√

2ror∆r

r + ro

(5)

Collecting either the positive or negative roots in Equation (5) produces a set of

d′ as a function of r and ro that result in constant-amplitude electric field at the

receiver location. Furthermore, based on the geometrical definition in Figure 1, we

can see that the set of all d′ satisfying Equation (5) for a given source-observation

approximates an ellipse whose foci are the source and observation points.

Although ideal semi-infinite diffracting screens are hard to find in reality, radio

engineers commonly use the KED result to approximate the effects of partial blockages

in wireless links. Office buildings, trees, houses, terrain, and many other things have

all been modeled as screens for the purposes of UHF and microwave radio diffraction
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[10-12]. In KED, the shape and orientation of the screen have only a secondary effect

on the solution anyway. Just consider Figure 1, where the screen can be oriented

at nearly any angle and still produce nearly the same field solution in Equation (1),

provided the edge produces the same clearance distance at d′ for a given r and ro.

In designing point-to-point microwave links, diffraction effects are minimized by

ensuring enough clearance distance between the link LOS path and the nearest

diffracting element. To facilitate link design, ellipsoids of constant path difference

are drawn around the link, with one focus at the transmitter and one focus at the

receiver. This geometry is illustrated in Figure 2. The ellipsoids of interest occur for

path differences

Ellipsoid n: ∆r =
nλ

2
for all points on ellipse (6)

The regions between these constant ellipsoids are Fresnel zones, with the nth Fresnel

zone defined as the region between the (n−1)th and nth ellipsoids of half-wavelength

path difference. Thus, the nth Fresnel zone corresponds to clearance distances in the

following range: √
ror(n− 1)λ

r + ro

< (d′)n <

√
rornλ

r + ro

(7)

The practical significance of the Fresnel zones can be shown by magnifying the KED

solution in Figure 2 for regions of small clearance. Generally, odd zones are regions

of constructive interference and even zones are regions of destructive interference.

2.2 Sommerfeld Solution for the PEC Edge

The exact Sommerfeld solution of the PEC half-plane problem depends on the polar-

ization of the incident field. In this discussion, perpendicular (⊥) polarization refers to

an incident plane wave with electric field perpendicular to the plane of incidence (the

sheet of paper in Figure 1); the electric field vector will have only a z-component. In

diffraction literature, this case is often called soft polarization – an artifact of acoustic
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propagation theory. Parallel (‖) polarization refers to an incident plane wave with

electric field parallel to the plane of incidence; the electric field vector will have only

x and y components. This case is often called hard polarization.

Marking three regions of space in Figure 1 helps the discussion of the Sommerfeld

solution. The reflection region is the area defined by 0 ≤ φ < 180◦−φi; in this region,

geometrical optics predicts the total field to be the superposition of two uniform plane

waves – the incident and reflected waves. The incident region is the area defined by

180◦ − φi ≤ φ ≤ 180◦ + φi; in this region, geometrical would predicts the total field

to be only the incident plane wave. Finally, the shadow region is the area defined

by 180◦ + φi < φ < 360◦; geometrical optics predicts the total field to be 0 in this

region, as the incident wave has been shielded entirely by the PEC. The exact total

field solution for both types of polarization, along with the mathematical forms of the

incident waves, are summarized in Table 1 using the cylindrical-coordinate geometry

in Figure 1 [1].

The Sommerfeld solution is a convenient construction, but does not provide im-

mediate intuition or insight into the wave propagation. To remedy this, let us use

the following formulation for total electric field ~E:

~E = ~EGO + ~Ed (8)

where ~EGO is the geometrical optics solution in Table 1 and ~Ed is the diffracted field

solution. The amplitudes and phases of the total ~E, geometrical optics ~EGO, and

diffracted ~Ez fields for ⊥-incidence are illustrated in Figure 3, demonstrating how the

discontinuities in the diffracted field exactly counterbalance the discontinuities in the

geometrical optics field. Note the interesting phase behavior in the diffracted field;

the phase tapers linearly in a circular pattern away from the screen edge. The same

behavior is, of course, present in the diffracted Hz fields for ‖-incidence, which is

shown in Figure 4. The results confirm Keller’s initial GTD assumption that wave

diffraction effects are approximately localized to material discontinuities [13].

6



2.3 Comparing KED with the Sommerfeld Solution

It is a useful exercise to transform the KED solution into the same geometry as the

Sommerfeld half-plane problem and perform the same geometrical optics + diffracted

wave decomposition of fields as Equation (8). Keeping in mind the KED solution is

valid only on one side of the diffracting screen, Figure 5 illustrates the amplitudes

and phases of total, geometrical optics, and diffracted fields of KED. Two immediate

behaviors become evident: 1) KED diffraction exhibits a localized wave that emanates

from the edge and superimposes onto the total geometrical optics field, and 2) due

to the KED approximations, there is a “fish-eye” distortion in the phase of this

localized wave that becomes severe at angles-of-observation approaching φ → 180◦

and φ → 360◦. The amplitude of the localized wave, however, still satisfies Kirchhoff

boundary conditions by approaching zero on the plane of the half-screen.

3 GTD Interpretation

3.1 Sommerfeld Asymptotic Expansion

We will concentrate on ⊥-incidence for our asymptotic analysis, as the ‖-incidence

follows similarly. First, note that the diffracted field in this formulation may be

written as

Edz =
Eo exp

(
jπ
4

)

√
π

[
−−
+

exp(jkρ cos(φ−φi)) F

(
+
+−

√
2kρ cos

(
φ− φi

2

))

+−− exp(jkρ cos(φ+φi)) F

(
+−−

√
2kρ cos

(
φ + φi

2

)) ]
(9)

Reflection Region
top sign

φ ≤ π − φi
Incidence Region

middle sign
π − φi < φ ≤ π + φi

Shadow Region
bottom sign

φ > π + φi

where the three signs mark the three discontinuous regions that exist in the geomet-

rical optics solution that persist when subtracted from the Sommerfeld solution in
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Table 1. Equation (9) makes use of the identity

F(a) =
√

π exp
(
−jπ

4

)
− F(−a) (10)

which cancels subtracted plane wave terms so that the solution may always be ex-

pressed in terms of Fresnel integral functions.

Half-plane formulations are convenient in asymptotic analysis, since a working

expansion can be achieved simply by integrating the Fresnel integral function by

parts repeatedly:

F(a) = − j

2a
exp(−ja2)

︸ ︷︷ ︸
O(1/a)

+
1

4a3
exp(−ja2)

︸ ︷︷ ︸
O(1/a3)

− 1

12

∞∫

a

1

x4
exp(−jx2) dx

︸ ︷︷ ︸
O(1/a5) + higher-order terms

(11)

This method does not get any closer to a closed-form result for the integral, but

we have generated a series expansion with respect to 1/a. Keeping only the first

term in Equation (11) and ignoring the higher-order behavior, the diffracted field of

Equation (9) may be written as

Edz(ρ, φ) ≈

cylindrical wave︷ ︸︸ ︷
Eo

exp(−jkρ)√
kρ

D⊥(φ,φi) diffraction pattern︷ ︸︸ ︷
− exp

(
− jπ

4

)

2
√

2π

[
sec

(
φ− φi

2

)
− sec

(
φ + φi

2

)]
(12)

which should be valid for arguments of the Fresnel integral function corresponding to

a > 1 [14]. The approximate diffracted field now has taken on the form of a cylindrical

wave emanating from the diffracting edge. Furthermore, there is a φ-varying pattern

to this wave that matches the Keller GTD screen diffraction coefficient [13].

The diffraction pattern in Equation 12 is an accurate approximation when the

cylindrical edge wave superimposes atop the geometrical optics wave, both of which

are easy to construct. The approximation only fails close-in to either the shadow

or reflection boundary, where the argument of the approximated Fresnel integral

functions becomes small. In fact, this condition – where Fresnel argument a ≤ 1 –

defines a pair of parabolic regions around the shadow and reflection boundaries. As
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the observation point moves farther from the diffracting edge, the region about these

boundaries where Equation 12 is invalid becomes smaller relative to the distance

from the edge. The uniform theory of diffraction correction to GTD, as originally

formulated by Kouyoumjian and Pathak, can be used to improve the solution within

these parabolic regions [15].

Note that a diffraction coefficient for ‖-polarization follows similarly; both coeffi-

cients are summarized in Table 2.

3.2 KED Asymptotic Expansion

Proceeding in a similar fashion, we may subtract out the geometrical optics portion

of the KED solution from Equation (1) over the region φ < φi + π to achieve the

diffracted field:

Ed = ∓
√

2

π

(
1 + j

2

)
Eo exp(−jk(ro + r))

k(r + ro)
F


±d sin φi

√
k

2

(
1

ro

+
1

r

)
 (13)

where the top signs are valid for the incidence region (φ < φi + π) and the bottom

signs are valid for the shadowed region (φ > φi + π). Based on the geometry of the

problem, we may recast this in terms of the path length difference ∆r defined in

Equation (4):

Ed(ρ, φ) = ∓
√

2

π

(
1 + j

2

)
Eo exp(−jk(ρo + ρ−∆r))

k(ρo + ρ−∆r)
F

(
±
√

k∆r
)

(14)

Using the same expansion for the Fresnel integral function as in Equation (10) we

may write the approximate diffracted field as

Ed(ρ, φ) ≈ Eo

kρo

exp(−jkρo)
︸ ︷︷ ︸

incident field

exp(−jkρ)√
kρ

√
ρo

ρo + ρ
︸ ︷︷ ︸

diffracted wave

−1

2
√

π
exp

(
−j

π

4

) √
ρoρ(ρo + ρ)

(ρo + ρ−∆r)
√

∆r︸ ︷︷ ︸
diffraction coefficient

(15)

The diffraction coefficient (all of the leftover terms in the solution) should be relatively

insensitive to the source distance ρo from the edge, as GTD would predict. Thus, we
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may take the limit as ρo →∞, which would correspond to plane-wave incidence:

D¦(φ, φi) =
−1

2
√

π
exp

(
−j

π

4

) √
ρ

∆r
(16)

This coefficient resembles one obtained by Giovaneli in [2]. Based on the plane wave

geometry, apply the law-of-sines in Figure 1 to simplify the diffracted wave solution

[9]: √
ρ

∆r
=

√
2rρ

d2 sin2 φi

=
1

| sin(φ− φi)|

√
−2 sin φ

sin φi

(17)

After substitutions and simplifications, the diffraction coefficient may be expressed

solely as a function of angular geometry. The end result is summarized in Table 2.

Using this method of derivation, the KED diffraction coefficient differs from an alter-

native, normal-incident coefficient derived by Bertoni [16]. Bertoni’s coefficient more

closely resembles Felsen’s GTD solution for a perfect absorber [17].

3.3 Extended GTD Formulation

Normal-incidence diffraction coefficients may be extended to skewed incidence, al-

though the polarization effects can be difficult to track. Below is a generic algorithm

for calculating GTD ray power for a variety of edge-diffraction problems:

1. Define the incident wavefront in terms of geometrical optics, tracking principle

radii of curvature along the ‖-incident and ⊥-incident directions with respect

to the diffracting edge (ρ‖ and ρ⊥, respectively) :

~Ei(~r) = Eoêi

√
ρ⊥ρ‖

(s + ρ⊥)(s + ρ‖)
exp(−jks) s = ‖~r−~ro‖

For illumination by realistic point sources, ρ‖ = ρ⊥.

2. Locate the point on a diffracting edge ~rd that satisfies θd = θi in Figure 6 (angle

of diffracted ray equals angle of incident ray) and evaluate the incident field

here, ~Ei(~rd).
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3. Calculate the unitless dyadic diffraction coefficient for the diffracting element

based on geometry and material properties.

4. Construct the diffracted wave solution using geometrical principles:

~Ed(~r) =
~Ei(~rd) ·D(φ, φi)

sin θd

√
ks

√
ρ⊥

ρ⊥ + s
exp (−jks) s = ‖~r−~rd‖ (18)

This is the wave that adds to the Geometrical Optics solution to provide an

estimate of diffracted field.

The key to this formulation is the dyadic diffraction coefficient, which takes the

following form:

D(φ, φi) = D⊥(φ, φi)û⊥v̂⊥ + D‖(φ, φi)û‖v̂‖ (19)

The coefficient in Equation (19) is a dyad because of the pair of vectors that appears

in the equation, representing an operation that converts a vector to another vector

[18]. When applying the dot-product of incident field vector to the dyadic diffraction

coefficient, the product is taken with the leftward unit vectors and the result is applied

as a coefficient to the rightward unit vectors. Equation (19) collapses to a single scalar

value when KED or similarly acoustic diffraction is applied.

To compute the unit-vector decompositions for polarization and direction of travel,

refer to Figure 6. This problem is aligned so that the z-axis coincides with the diffract-

ing edge. Thus, we may write unit vectors for the incident direction of propagation

k̂i and the diffracted direction of propagation k̂d as

k̂i = − sin θi cos φix̂− sin θi sin φiŷ − cos θiẑ (20)

k̂d = sin θd cos φdx̂ + sin θd sin φdŷ + cos θdẑ (21)

The unit vectors û⊥ and û‖ are defined to be the perpendicular and parallel directions

of polarization for the incident wave and the unit vectors v̂⊥ and v̂‖ are defined
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to be the respective directions of polarization for the diffracted wave. With these

definitions, we may write the following relationships:

û‖ =
ẑ× k̂i

‖ẑ× k̂i‖
û⊥ = k̂i × û‖ v̂‖ =

ẑ× k̂d

‖k̂d × ẑ‖ v̂⊥ = k̂d × v̂‖

Though still cumbersome, this geometrical formulation dramatically simplifies the

relationship between polarization and diffraction coefficients. This algorithm works

well for incident wavefronts that can be described by simple geometrical optics ex-

pressions; for incident waves with higher-order field structure, it may be necessary to

apply slope diffraction coefficients for increased accuracy [19].

The geometry of polarization-tracking is unnecessary if the scalar KED diffrac-

tion coefficient is used. For this case, the dot product of incident field vector and

dyadic diffraction coefficient in Equation (19) reduces to a scalar multiplication of

field amplitude and KED diffraction coefficient.

3.4 Comparison of the Diffraction Coefficients

In Figure 7, the graph GTD diffracted power of both Sommerfeld-⊥ and -‖ incidence

PEC waves is shown, with each normalized against the KED GTD coefficient for the

same observation angle; incidence angle is at φi = 90◦. Notice that for observations

near the shadow boundary, all GTD coefficients are nearly identical, independent of

incident angle. When the observation point drops deeper into the shadow region

(φ → 360◦), the ‖-polarization PEC result leads to much more diffracted power than

the ⊥-polarization. The converse is true for observations made close to the open

aperture in the problem (φ → 180◦).

Perhaps most interestingly, the normal-incident KED diffraction coefficient is an

exact dB-average of the two PEC half-plane coefficients across the entire observation

area. In the linear scale, the KED diffraction coefficient is then the geometric mean

of the two Sommerfeld-based coefficients:

|D¦(φ, π/2)|2 =
∣∣∣ D⊥(φ, π/2)

∣∣∣
∣∣∣ D‖(φ, π/2)

∣∣∣ (22)
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for all observation angles 180◦ ≤ φ ≤ 360◦. Despite its approximations, the KED

coefficient represents a profoundly useful middle-ground in diffraction problems where

polarization or screen composition is unknown. Even more bizarre is that by forcing

KED into a geometrical framework, the problematic phase behavior near the plane

of the screen is repaired.

Felsen’s GTD coefficient D(F )
¦ (φ, φi) for a perfect absorbing half-plane, included

in Table 2 and Figure 7 for comparison, also exhibits a blend of behavior for both

polarizations of the PEC half-plane – but in an entirely different manner than the

KED-based result. Independent of incident angle φi, the Felsen coefficient resembles

Sommerfeld-⊥ when φ → 180◦ and resembles Sommerfeld-‖ when φ → 360◦. Unlike

the KED coefficient, the Felsen coefficient does not approach zero on the plane of the

screen, thereby violating Kirchhoff boundary conditions. The Felsen coefficient does,

however, maintain reciprocity by remaining invariant under exchange of the incident

angle φi and the observation angle φ; the underlying KED diffracted wave exhibits

non-reciprocal behavior for certain combinations of incident and observation angles.

4 Example: FM Radio Over Terrain

Now let us illustrate how the differences between the diffraction coefficients affect

practical radio wave propagation. WREK transmits a 91.1 MHz FM radio signal with

effective isotropic radiated power of EIRP=54.0 dBW (about 250 kW). To reach one

coverage area, the station must rely on double diffraction over the top of two terrain

peaks of equal altitude that can be modeled as 90◦ wedges according to the geometry

in Figure 8. Calculation of received power using the different diffraction coefficients

will illustrate their respective trade-offs.

Let us calculate all dimensions, referencing all incident angles to the reflective
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facets of the two wedges in Figure 8. At point A, the incident wave power is

(
PR

GR

)

A
= EIRP

λ2

16π2r2
1

(23)

When the diffraction coefficient is applied and the first diffracted wave is propagated

forward, the wave power at point B is

(
PR

GR

)

B
= EIRP

λ3|D(φ2, φ1)|2
32π3r1r2(r1 + r2)

(24)

Applying the next diffraction coefficient (disregarding any additional reflections and

interactions along the way), the second diffracted wave propagates forward to the

receiver location for a received power of

(
PR

GR

)

RX

= EIRP
λ4|D(φ2, φ1)|2|D(φ4, φ3)|2

64π4r1r2r3(r1+r2+r3)
(25)

The solution in Equation (25) assumes that the second peak lies outside the transition

region that surrounds the shadow boundary of the first diffraction peak. Table 3

presents the output of this calculation for a variety of different diffraction coefficients.

Of course, all double diffraction results in Table 3 yield significantly lower re-

ceived powers when compared to the -11.9 dBm received in a LOS link of comparable

transmitter-receiver separation distance. Note, however, the difference between the

received powers for horizontal (⊥) and vertical (‖) polarizations when the peaks are

modeled as diffracting PEC screens; they yield received powers of -85.5 and -80.2

dBm, respectively. The significant difference of 5.3 dB reveals a strong polarization

dependence. This difference increases to 12.4 dB when the terrain is modeled as

PEC wedges, but the average of the two polarization states is almost identical to the

average screen-based results.

From these results we can gather that replacement of wedges with screens in a

diffraction problem de-emphasizes polarization dependence, but does not significantly

change the average received power [16]. Furthermore, the polarization-averaged re-

ceived power for the PEC screens of -82.9 dBm is almost identical to the -82.4 dBm of
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received power predicted by the KED blockage coefficient. The Felsen screen absorber

coefficient also predicts a similar received power of -83.5 dBm.

5 Conclusions

Geometrical comparisons of half-screen diffraction problems provide engineers prac-

tical insight into the underlying physics and application of diffraction formulas. The

GTD or UTD formulations of most screen diffraction problems are often preferred

methods for constructing field solutions, rather than their classical formulations. In

fact, this study showed that by forcing KED into a GTD-style framework, some of

the skewed behavior is actually repaired.

Based on the presented analysis, scalar KED-type diffraction solutions are prefer-

able if the polarization of the radiator is unknown or unpredictable, or if the com-

position of the diffracting screen is unknown; KED-based GTD provides valuable

middle-of-the-road behavior when compared to the range of possible behaviors in

other diffraction coefficients. However, if the diffracting edge is truly straight, its

composition is highly conductive, and the incident polarization is known, then the

Sommerfeld-based GTD or UTD solutions should be applied.
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Table 1: Summary of the Sommerfeld Half-Plane Diffraction Solutions.
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Table 2: Summary of the half-plane GTD diffraction coefficients.

Solution Type Diffraction Coefficient

Sommerfeld-⊥ D⊥(φ, φi) =
− exp(−j π

4 )
2
√

2π

[
sec

(
φ−φi

2

)
− sec

(
φ+φi

2

)]

Sommerfeld-‖ D‖(φ, φi) =
− exp(−j π

4 )
2
√

2π

[
sec

(
φ−φi

2

)
+ sec

(
φ+φi

2

)]

Felsen Absorber D(F )
¦ (φ, φi) =

− exp(−j π
4 )√

2π

[
1

π−|φ−φi| +
1

π+|φ−φi|
]

KED Blockage D¦(φ, φi) =
− exp(−j π

4 )√
2π

| csc(φ− φi)|
√
− sin φ

sin φi

Table 3: Examples of received power calculated for the FM radio double diffraction

example.

Diffraction Received

Treatment Power (dBm)

Line-of-Sight Link -11.9

PEC Half Plane-⊥ -85.5

PEC Half Plane-‖ -80.2

PEC Wedge-⊥ -88.8

PEC Wedge-‖ -76.4

Felsen Absorber -83.5

KED Blockage -82.4
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