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I. INTRODUCTION 
reating an FCC-compliant signal generator for microwave 
frequencies involves several steps and components.  In 

this project, a CW signal generator for 5.8 GHz was designed, 
simulated piece-by-piece, fabricated, and tested.  The goal was 
to produce a 7 dBm signal in the bandwidth 5.725-5.850 GHz 
wherein the signal frequency is incremented by 1 MHz every 
0.4 seconds to comply with FCC part 15 regulations. 
 

II. CIRCUIT DESIGN 

A. Overview 
The system block diagram is given in Figure 1.  The PIC 

microcontroller programs the PLL (phase-locked loop) to lock 
at whatever is the current frequency in the target bandwidth.  
The PLL, which is referenced by the crystal oscillator (shown 
amplified here but ultimately directly connected), sends a 
tuning voltage to the VCO (voltage-controlled oscillator) to 
generate the RF signal.  The power divider then sends half the 
generated power back to the PLL to provide feedback, the 
other half being filtered and amplified as the output signal.  
The mixer shown following amplification was considered for 
use in creating power-optimized waveforms, but this was later 
not implemented due to the extra complexity and the required 
quick turn-around. 
 

 
Fig. 1.  System block diagram. 
 

B. Wilkinson Power Divider 
The equal power divider was designed with the topology 

and methodology given in [1].  A circuit schematic is shown 
in Figure 2.  Substrate and operating parameters are given in 
Table 1. 

The impedances of the two quarter-wavelength sections 

 
 

were calculated by 

0 0 0 2 70.7A Bz z z= = = Ω . 
For the equal-split divider, the value of resistor RW can be 
calculated as 

02 100WR z= = Ω . 

 
Fig. 2.  Wilkinson power divider topology (Image courtesy of 
www.microwaves101.com). 
 
The two quarter-wavelength transformers preceding ports 2 
and 3 in Figure 2 were unnecessary in this application because 
the equal-split divider has 50 Ω output at each of those ports.  
The widths of the 50 Ω and 70.7 Ω microstrip line segments 
were determined by ADS LineCalc to be about 121 and 63 
mil, respectively. 
 
Table 1.  Substrate and Operating Parameters 

Parameter Value 
Relative permittivity 4.2 
Substrate thickness 62 mil 
Metallization thickness 1mil 
Loss tangent 0.0009 
Wavelength 1007 mil 
z0 50 Ω 
σ 5.813x107 S/m 

 
 Before constructing a simulation schematic, the layout of 
the power divider was considered.  Rather than arranging the 
output ports to be adjacent to each other, they were deemed 
better placed on opposite sides of the power divider since one 
would lead to other RF components while one would return to 
the digital PLL as part of the feedback loop.  Coupling 
between digital and RF signals and unnecessary lengths of 
transmission line were reduced in this configuration. 
 Separating the quarter-wavelength sections in this way 
made the placement of the 100 Ω resistor more difficult.  To 
keep package size small (limiting unwanted inductance), two 
half-wavelength transmission line sections were added 
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connecting the resistor leads to ports 2 and 3.  In terms of the 
standing wave pattern, this is equivalent to directly connecting 
the resistor leads, but it allowed for the necessary geometry to 
be realized on the physical board.  The layout is given in 
Figure 3. 
 

 
Fig. 3.  Wilkinson power divider layout.  The blue circle 
indicates the placement of the 100 Ω resistor and the red 
circles the locations of ports 2 and 3. 
 
 Generating a schematic from the layout, a genetic 
optimization was performed to find the critical microstrip 
lengths and widths yielding s21 and s31 nearest as possible to 3 
dB and minimum s11.  The s-parameter results from the 
Momentum (method of moments) simulation are shown in 
Figure 4 with the corresponding dimensions given in Table 2.  
Simulations predicted output power to be about -3.5 dB with 
s11 about -25 dB. 
 

 
Fig.  4.   Momentum simulation result for power divider using 
Table 2 dimensions. 
 
Table 2.  Power Divider Optimal Microstrip Dimensions 

Dimension Value 
λ/4 Length 228 mil 
λ/4 Width 60 mil 
λ/2 Length 526 mil 
λ/2 Width 60 mil 

C. Bandpass Filter 
A coupled line design was chosen for the bandpass filter 

due to its ease of implementation at 5.8 GHz and wide 
bandwidth.  The design methodology and topology given in 
[1] was used.  A maximally flat filter was chosen to provide 
consistent passband gain across the bandwidth.  Strong 
attenuation near the passband was not needed because no 
signals were expected to be generated in that range if the PLL 
was locked.  The number of resonators was fixed at 4 to 
provide wide bandwidth without the additional attenuation of 
more resonators.  The equations below were used to determine 
the even and odd characteristic impedances of the coupled 
sections (where gk are the filter prototype values for a 3rd 
order maximally flat lowpass filter, available in the literature). 
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 Again, a genetic optimization was performed to optimize 
the performance of the filter based on the critical dimensions 
of each resonator pair (length, line width, and spacing).  S-
parameter results from the Momentum simulation of the 
optimized layout are shown in Figure 5. 
 The simulation results indicated quite high performance, 
although less was expected after the circuit was fabricated.  
Based on this simulation data, the layout shown in Figure 6 
was chosen.  Relevant dimensions are given in Table 3, where 
w indicates resonator line width, l resonator length, s the 
spacing between lines in the resonator, and the subscripts the 
resonators each dimension refers to (i.e. “14” indicates the 1st 
and 4th resonators). 

D. PCB Design 
The PIC44 connector board designed by the Georgia Tech 

IEEE Hardware team was used as the microcontroller 
interface.  All relevant schematics and part lists can be found 
at [2]. 

The schematic for the additional PCB designed for this 
project is available in Appendix A.  The power divider and 
bandpass filter layouts were exported from ADS to Allegro to 
integrate with the rest of the PCB layout.  3.3 volt and 5 volt 
regulators are used as the supply voltage for different parts.  
These were placed as far from the RF components as possible 
to avoid RF noise in the power supplies and digital or analog 
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Fig. 5.  Momentum results for BPF s11 and s21. 
 
 

 
Fig. 6.  Bandpass filter PCB layout. 
 
Table 3.  Bandpass Filter Critical Dimensions 

Dimension Value (mil) 
w50Ω 121 
w14 34 
s14 20 
l14 285 
w23 50 
s23 48 
l23 268 

 
noise in the RF signals.  At the output of the crystal oscillator, 
an op-amp was used as a buffer.  In measurement it was seen 
that the output of the crystal oscillator is enough to drive the 
PLL chip, and the op-amp was therefore not used.  A 3rd order 
loop filter was designed at the output of the PLL chip.  Two 
RF amplifiers were used, one of them connected directly to 
the output of the filter.  A stand alone amplifier circuit was 
isolated to use as another gain stage, which can be seen in the 
schematic.  The final PCB layout is available in Appendix B. 

E. Loop Filter Design 
The goals in the design of this PLL frequency synthesizer 

were to achieve low phase noise, low spurious output and to 

step, or hop, between 75 channels 1 MHz wide, switching 
every 0.4 seconds.  The loop filter is important for phase 
locking.  Figure 7 shows the circuit diagram of the loop filter 
and Figure 8 the schematic diagram in ADS. 
 

 
Fig. 7.  Schematic of loop filter. 
 

 
Fig. 8.  ADS schematic of loop filter. 
 

The loop filter is needed to remove any unwanted high 
frequency components which might pass out of the phase 
detector and appear in the VCO tune line.  They would then 
appear on the output of the VCO as spurious signals.  The 
filter affects the ability of the loop to change frequencies 
quickly.  With very low cutoff frequency, changes in tune 
voltage will only take place slowly, while higher cutoff 
frequency results in quicker frequency changes. 

The phase margin of the loop filter is very important as it 
determines stability.  The phase margin should be greater than 
45° for stable operation.  If the phase margin is too large, it 
slows down the frequency locking process.  Therefore, a 
balanced value is required. 

The following steps were taken in the loop filter design 
process: 

1. Determine the maximum dividing ratio N. 
( ) ( )Max VCO Freq / Channel SpacingN =  

2. Calculate natural frequency. 
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3. Calculate capacitor C2. 
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4. Calculate resistor R1. 

1
2

2
cp VCO

NR
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ζ=  

5. Calculate C1. 

1 20.1C C=  
6. Calculate R2 and C3. 
 
R2 and C3 are used to reduce any spurs cause by the 

reference frequency.  The product of R2 and C3 should be at 
least 1/10 the product of C2 and R1.  Table 4 shows the values 
for components of the loop filter. 
 
Table 4.  Loop Filter Component Values 

Loop Filter Component Optimized Value 
N 5762 
C2 3nF 
R1 4.7k 
C1 .15nF 
R2 1k 
C3 0.1nF 
 

Figures 9 and 10 show the output voltage and phase 
responses of the loop filter respectively.  Bandwidth is 38.2 
kHz and the phase margin 57.6°, which meet the criteria for 
the stability of the PLL. 

 
Fig. 9.  Loop filter output voltage. 
 

F. PLL Programming 
The microcontroller used here is the 18F4520, one of the 

PIC microcontroller families.  The PIC was to provide 
necessary data for the PLL in order to perform frequency 
hopping.  Based on the specifications, the operation frequency 
includes the 5.725 – 5.850 GHz ISM (unlicensed) band.  
There are 75 channels spaced 1 MHz apart.  Also, a maximum 
0.4 s dwell time on 1 carrier frequency is tolerated during a 
30s interval.  Based on the PLL chip, there are three signals 
that are needed for PLL programming named latch enable 
(LE), data, and clock.  The timing diagram is shown in Figure 
11. 

 
Fig. 10.  Loop filter phase response. 
 

 
Fig. 11.  Timing diagram for PLL programming. 
 

The required data is sent in serial (SPI) to the PLL with the 
LSB bit sent first.  Programming the PLL consists of 4 steps: 
 

1. Do a function latch load (10 in two LSBs).  As part of 
this, load 1 to the F1 bit.  This enables the counter reset. 
2. Do an R counter load (00 in two LSBs). 
3. Do an AB counter load (01 in two LSBs). 
4. Do a function latch load (10 in two LSBs).  As part of 
this, load 0 to the F1 bit.  This disables the counter reset. 

 
Therefore the code should provide the values of the function 

latch, R counter and AB counter.  The crystal oscillator 
frequency is 20 MHz, but the reference frequency for the PLL 
was chosen to be 1 MHz because in the integer-N synthesizer 
the output frequency step is equal to the reference signal.  As 
the frequency step at the output should be 1 MHz, this was 
chosen as the reference signal.  A divider was needed to 
divide the crystal oscillator frequency by 20. 

The value of the function latch and reference latch are 
always constant because for frequency hopping only the AB 
counter value was changed.  Figure 12 shows the divider 
block diagram.  The prescaler value was selected to be 64 i.e. 
p=64.  By having B=89 and A=29 the divider value will be 
N=BP+A=5725.  By considering the 1 MHz reference 
frequency the output frequency will be 5.725 GHz.  To output 
the next channel the divider number should be incremented by 
one.  Therefore the A counter will change from 29 to its 
maximum of 63 and provide 35 channels.  After that the B 
counter becomes 90 and the A starts from 0 to 39 to provide 
the other 40 channels.  By knowing these values the R and AB 
latch values have been determined. 
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Fig. 12.  Frequency divider block diagram. (PLL datasheet) 
 

In the AB counter latch the first two bits (LSB bits) are 
devoted to the control bits, and the next 6 bits are A values 
and the other 13 bits B values as shown in the PLL datasheet.  
Therefore when the value of A increases for one step then the 
value of the AB register should change by 4 steps.  By this 
method the different values for the AB counter were 
determined and are generated in the code. 
 

G. PIC Code 
The algorithm of frequency hopping on which the code is 

based is shown in Figure 13.  A full code listing is provided in 
Appendix C.  Port B of the PIC is used for communication 
with the PLL.  The PortB.0 is devoted to the clock, PortB.1 is 
for data, and PortB.1 is devoted to the LE for the PLL.  In the 
main code there is a loop which always calls the function 
program_pll() (In the header file the functions are defined 
along with the different values for the function latch, R 
counter latch and AB counter latch).  In this function the PLL 
is programmed 75 times, after which it exits, returning to the 
main program.  Thus, frequency hopping is executed 
indefinitely.  In the program_pll() function, an array named 
pll_bytes is defined containing the different values of the R, 
AB counters, and function latch.  There is a loop in which 
each bit is determined, and the data is clocked into the PLL.  
After this loop sending the necessary data of the function 
latch, R counter latch, AB counter latch and again the function 
latch, another loop is used to provide a delay of 0.4 seconds. 

In the function latch of the PLL there are 3 bits named the 
“Mux out control.”  These bits were set to serial data output so 
that when data is received by the PLL, it can be visually 
monitored on an oscilloscope.  In measurement the data was 
visible every 0.4 seconds, meaning the PLL was successfully 
programmed. 

 

 
Fig. 13.  Block diagram of frequency hopping PIC code. 
 

III. SYSTEM TESTING 
 The microcontroller was tested to make sure the code was 
working properly.  Figure 14 shows the latch enable output of 
the PIC microcontroller.  The LE, which is normally high, 
should be zero every 0.4 seconds to send data.  In this figure it 
can be seen that every 0.4 second latch enable becomes zero 
for a short time. 
 

 
Fig. 14.  Signal observed on LE pin. 
 

The clock output of the microcontroller is shown in Figure 
15.  Based on this figure every 0.4 second there are some 
clock signals for sending data, then nothing.  These signals 
show that the code is correct and the microcontroller is 
working well. 
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Fig. 15.  Microcontroller clock output. 
 

 
Fig. 16.  VCO free running frequency as seen on spectrum 
analyzer. 
 
 The following steps were taken in testing the signal 
generator: 
 

‐ The output of PIC microcontroller was tested on 
oscilloscope.  The correct signals for clock, latch 
enable and data were observed.  Clock and latch 
enable signals were writing the data in PLL after 0.4 
seconds. 

‐ VCO was working correctly; the free running 
frequency was observed on the spectrum analyzer 
shown in Figure 16. 

‐ Locking and frequency hopping were seen for some 
time, but then some problem occurred. 

‐ The PLL was programmed using three different 
methods suggested in the PLL data sheet. 

‐ The PLL chip was replaced due to possible damage 
from the signal provided by the powerful crystal 
oscillator. 

‐ An external ref-in signal generator with low voltage 
values was used to ensure that PLL ref-in was getting 
the proper voltage. 

‐ For testing, data at MUX out was sent.  The correct 
data was received, meaning the PLL was correctly 
programmed. 

‐ Another loop filter with better phase margin was 
implemented to ensure if there was any instability 
because of inadequate phase margin.  A phase margin 
of about 57° was achieved. 

IV. CONCLUSIONS 
The PLL can accept a signal at the RF-IN port with 

minimum strength -5 dBm.  Our output after the power divider 
was -15 dBm.  Thus, the signal with -15 dBm strength would 
be too weak for the PLL to read.  There may be some problem 
in the board because of which the signal with strength better 
than -5 dBm was not available for the proper operation of the 
PLL.  The problem seems to be in the layout from VCO 
output to power divider where there is a weak signal.  This 
problem may be in the capacitor, which may not be operating 
correctly at 5.8 GHz. 
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BILL OF MATERIALS 
 

Component xQuantity Part Number/Description 
3.3 V Reg. x1 AP1117E33GDIDKR 
5.0 V Reg. x1 LM7805CT-ND 
PLL x1 ADF4107BRUZ 
VCO x1 ROS-5776-119+ 
RF Amplifier x2 GALI-39+ 
Crystal Oscillator x1 ECS-3953M-BN 
PIC Connector Board x1 PIC44 ([2]) 
60 mil FR4 board x1 www.barebonespcb.com 
Low frequency caps SMT Zone cap kits 
High frequency caps Dielectric Labs C06 series 
Inductors SMT Zone inductor kits 
Resistors SMT Zone resistor kits 
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Appendix A: PCB Schematic 
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Appendix B: PCB Layout 
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Appendix C: PIC Code 
 
/************************************************ 
/* Freq_Hop serial programming routine 
/* for PIC18F4520 
/***********************************************/ 
/************************************************ 
/* Freq_Hop serial programming routine header 
/* for PIC18F4520 
/***********************************************/ 
#include "config_18f4520.h" 
#include <p18f4520.h> 
#include "Freq_Hop.h" 
 
void main() { 
/*** 
 * Disable Interrupts during configuration 
 */ 
   PIE2 = 0;   // B4=EE B3=BCL B2=LVD B1=TMR3 B0=CCP2    
   PIE1 = 0;    // B7=PSP B6=AD B5=RC1 B4=TX1 B3=SSP B2=CCP1 B1=TMR2 B0=TMR1 
   INTCON = 0; 
 /* IO Ports configuration  
*/      
   TRISA = 0b00111111;  //set TRIS to all inputs before setting initial value, port A is 6 bits wide 
   PORTA = 0b00000000;  //Set initial value for PORTA 
   TRISA = 0b11111111;  //Set I/O for PORTA as input (1) or output (0) 
 
   TRISB = 0b11111111;  //set TRIS to all inputs before setting initial value, port B is 8 bits wide 
   PORTB = 0b00000000;  //Set initial value for PORTB 
   TRISB = 0b11110000;  //Set I/O for PORTB as input (1) or output (0) 
 
   TRISC = 0b11111111;  //set TRIS to all inputs before setting initial value, port C is 8 bits wide 
   PORTC = 0b00000000;  //Set initial value for PORTC 
   TRISC = 0b11111001;  //Set I/O for PORTC as input (1) or output (0) 
 
   TRISD = 0b11111111;  //set TRIS to all inputs before setting initial value, port D is 8 bits wide 
   PORTD = 0b00000000;  //Set initial value for PORTD 
   TRISD = 0b11111111;  //Set I/O for PORTD as input (1) or output (0) 
 
   TRISE = 0b00000111;  //set TRIS to all inputs before setting initial value, port E is 3 bits wide! 
   PORTE = 0b00000111;  //Set initial value for PORTE 
   TRISE = 0b00000111;  //Set I/O for PORTE as input (1) or output (0) 
    
   ADCON1 = 0b00001111; // Make all ADC/digital pins digital  
  
while (1) 
   { 
      program_pll(); 
   } 
   } 
 
/************************************************ 
/* Freq_Hop serial programming routine header 
/* for PIC18F4520 
/***********************************************/ 
#ifndef __Freq_Hop_H 
#define __Freq_Hop_H 
 



 10

#include <p18f4520.h> 
 
#define SCLK LATBbits.LATB0 
#define SDATA LATBbits.LATB1 
#define LE LATBbits.LATB2 
#define TEST LATBbits.LATB3 
//#define SYNC PORTAbits.RA2 
#define BIT7 0b10000000 
#define BIT6 0b01000000 
#define BIT5 0b00100000 
#define BIT4 0b00010000 
#define BIT3 0b00001000 
#define BIT2 0b00000100 
#define BIT1 0b00000010 
#define BIT0 0b00000001 
#define PLLROWS 4 
#define PLLCOLS 3 
 
#define clockset() (SCLK = 1) 
#define clockclr() (SCLK = 0) 
#define dataset() (SDATA = 1) 
#define dataclr() (SDATA = 0) 
#define pllen() (LE = 0) 
#define plldis() (LE = 1) 
//#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }    // define a delay 
extern unsigned int DELAY;  
typedef unsigned char byte; 
 
 const static byte latchR[1][3]= { 
    0x50, 
    0x00, 
    0x02 
  }; 
static byte latchN[1][3]= { 
    0x75, 
    0x59, 
    0x00 
  }; 
 const static byte latchF[1][3]= { 
    0xE6, 
    0x80, 
    0xDF 
  }; 
const static byte latchI[1][3]= { 
    0xE2, 
    0x80, 
    0xDF 
  }; 
// set pll for 5.75 GHz 
static byte pll_bytes[PLLROWS][PLLCOLS]= { 
  { 
    0xE6, 
    0x80, 
    0xDF 
  }, 
  { 
    0x50, 
    0x00, 
    0x02 
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  }, 
  { 
    0x75, 
    0x59, 
    0x00 
  }, 
  { 
    0xE2, 
    0x80, 
    0xDF 
  } 
}; 
 
void program_pll(void) { 
 
  byte j,k,m,bangthis; 
int i=0; 
int p=0;   
int n=0;     //use to track 75 different frequencies 
    n=0; 
    latchN[0][0]=0x75; 
    latchN[0][1]=0x59; 
    latchN[0][2]=0x00;     
    for( n=0; n < 75; n++) {  
      clockclr(); 
   
  for( j=0; j < PLLROWS; j++) { 
 pllen(); 
    for( m=0; m < PLLCOLS; m++) { 
      bangthis = pll_bytes[j][m]; 
      for( k=0; k<8; k++ ) {                                                     
        if ((bangthis & BIT0) != 0) { 
   dataset(); 
  } else { 
   dataclr(); 
  } 
        clockset(); 
      for(i=0;i<=5;i++) 
        { 
          ; 
        } 
        clockclr(); 
      for(i=0;i<=5;i++) 
        { 
          ; 
        } 
        bangthis = bangthis >> 1; 
      } // for k 
    } // for m 
     
   if ( j == 2) { 
    
      if ( pll_bytes[2][0] != 0xFD ) { 
         pll_bytes[2][0] +=4;          //we are changing the A value of the counter 
      } 
      else { 
      pll_bytes[2][1]=0x5A;            // The value of the counter B should be changed because the Counter A will overflow 
      pll_bytes[2][0]=0x01; 
      } 
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 } 
 plldis(); 
  
  } // for j 
TEST = 0; 
//int i=0; 
for(i=0;i<=500;i++) 
{ 
for (p=0;p<=200;p++) 
; 
} 
//Delay(102000); 
TEST = 1; 
}  // for n 
//}  // for while 
} // program_pll 
 
#endif 


