
 1

I. INTRODUCTION
reating an FCC-compliant signal generator for microwave
frequencies involves several steps and components. In

this project, a CW signal generator for 5.8 GHz was designed,
simulated piece-by-piece, fabricated, and tested. The goal was
to produce a 7 dBm signal in the bandwidth 5.725-5.850 GHz
wherein the signal frequency is incremented by 1 MHz every
0.4 seconds to comply with FCC part 15 regulations.

II. CIRCUIT DESIGN

A. Overview
The system block diagram is given in Figure 1. The PIC

microcontroller programs the PLL (phase-locked loop) to lock
at whatever is the current frequency in the target bandwidth.
The PLL, which is referenced by the crystal oscillator (shown
amplified here but ultimately directly connected), sends a
tuning voltage to the VCO (voltage-controlled oscillator) to
generate the RF signal. The power divider then sends half the
generated power back to the PLL to provide feedback, the
other half being filtered and amplified as the output signal.
The mixer shown following amplification was considered for
use in creating power-optimized waveforms, but this was later
not implemented due to the extra complexity and the required
quick turn-around.

Fig. 1. System block diagram.

B. Wilkinson Power Divider
The equal power divider was designed with the topology

and methodology given in [1]. A circuit schematic is shown
in Figure 2. Substrate and operating parameters are given in
Table 1.

The impedances of the two quarter-wavelength sections

were calculated by

0 0 0 2 70.7A Bz z z= = = Ω .
For the equal-split divider, the value of resistor RW can be
calculated as

02 100WR z= = Ω .

Fig. 2. Wilkinson power divider topology (Image courtesy of
www.microwaves101.com).

The two quarter-wavelength transformers preceding ports 2
and 3 in Figure 2 were unnecessary in this application because
the equal-split divider has 50 Ω output at each of those ports.
The widths of the 50 Ω and 70.7 Ω microstrip line segments
were determined by ADS LineCalc to be about 121 and 63
mil, respectively.

Table 1. Substrate and Operating Parameters

Parameter Value
Relative permittivity 4.2
Substrate thickness 62 mil
Metallization thickness 1mil
Loss tangent 0.0009
Wavelength 1007 mil
z0 50 Ω
σ 5.813x107 S/m

 Before constructing a simulation schematic, the layout of
the power divider was considered. Rather than arranging the
output ports to be adjacent to each other, they were deemed
better placed on opposite sides of the power divider since one
would lead to other RF components while one would return to
the digital PLL as part of the feedback loop. Coupling
between digital and RF signals and unnecessary lengths of
transmission line were reduced in this configuration.
 Separating the quarter-wavelength sections in this way
made the placement of the 100 Ω resistor more difficult. To
keep package size small (limiting unwanted inductance), two
half-wavelength transmission line sections were added

5.8 GHz Signal Generator
Mitch Costley, Sen-wen Hsiao, Wasif Khan, and Mehdi Kiani

C

 2

connecting the resistor leads to ports 2 and 3. In terms of the
standing wave pattern, this is equivalent to directly connecting
the resistor leads, but it allowed for the necessary geometry to
be realized on the physical board. The layout is given in
Figure 3.

Fig. 3. Wilkinson power divider layout. The blue circle
indicates the placement of the 100 Ω resistor and the red
circles the locations of ports 2 and 3.

 Generating a schematic from the layout, a genetic
optimization was performed to find the critical microstrip
lengths and widths yielding s21 and s31 nearest as possible to 3
dB and minimum s11. The s-parameter results from the
Momentum (method of moments) simulation are shown in
Figure 4 with the corresponding dimensions given in Table 2.
Simulations predicted output power to be about -3.5 dB with
s11 about -25 dB.

Fig. 4. Momentum simulation result for power divider using
Table 2 dimensions.

Table 2. Power Divider Optimal Microstrip Dimensions

Dimension Value
λ/4 Length 228 mil
λ/4 Width 60 mil
λ/2 Length 526 mil
λ/2 Width 60 mil

C. Bandpass Filter
A coupled line design was chosen for the bandpass filter

due to its ease of implementation at 5.8 GHz and wide
bandwidth. The design methodology and topology given in
[1] was used. A maximally flat filter was chosen to provide
consistent passband gain across the bandwidth. Strong
attenuation near the passband was not needed because no
signals were expected to be generated in that range if the PLL
was locked. The number of resonators was fixed at 4 to
provide wide bandwidth without the additional attenuation of
more resonators. The equations below were used to determine
the even and odd characteristic impedances of the coupled
sections (where gk are the filter prototype values for a 3rd
order maximally flat lowpass filter, available in the literature).

1
12o

DZ J
g

π
=

1

, 2,3
2o n

n n

DZ J n
g g
π

−

= =

1
12o N

N N

DZ J
g g
π

+
+

=

()21oe o o oZ Z JZ JZ⎡ ⎤= + +⎣ ⎦

()21oo o o oZ Z JZ JZ⎡ ⎤= − +⎣ ⎦

 Again, a genetic optimization was performed to optimize
the performance of the filter based on the critical dimensions
of each resonator pair (length, line width, and spacing). S-
parameter results from the Momentum simulation of the
optimized layout are shown in Figure 5.
 The simulation results indicated quite high performance,
although less was expected after the circuit was fabricated.
Based on this simulation data, the layout shown in Figure 6
was chosen. Relevant dimensions are given in Table 3, where
w indicates resonator line width, l resonator length, s the
spacing between lines in the resonator, and the subscripts the
resonators each dimension refers to (i.e. “14” indicates the 1st
and 4th resonators).

D. PCB Design
The PIC44 connector board designed by the Georgia Tech

IEEE Hardware team was used as the microcontroller
interface. All relevant schematics and part lists can be found
at [2].

The schematic for the additional PCB designed for this
project is available in Appendix A. The power divider and
bandpass filter layouts were exported from ADS to Allegro to
integrate with the rest of the PCB layout. 3.3 volt and 5 volt
regulators are used as the supply voltage for different parts.
These were placed as far from the RF components as possible
to avoid RF noise in the power supplies and digital or analog

 3

Fig. 5. Momentum results for BPF s11 and s21.

Fig. 6. Bandpass filter PCB layout.

Table 3. Bandpass Filter Critical Dimensions

Dimension Value (mil)
w50Ω 121
w14 34
s14 20
l14 285
w23 50
s23 48
l23 268

noise in the RF signals. At the output of the crystal oscillator,
an op-amp was used as a buffer. In measurement it was seen
that the output of the crystal oscillator is enough to drive the
PLL chip, and the op-amp was therefore not used. A 3rd order
loop filter was designed at the output of the PLL chip. Two
RF amplifiers were used, one of them connected directly to
the output of the filter. A stand alone amplifier circuit was
isolated to use as another gain stage, which can be seen in the
schematic. The final PCB layout is available in Appendix B.

E. Loop Filter Design
The goals in the design of this PLL frequency synthesizer

were to achieve low phase noise, low spurious output and to

step, or hop, between 75 channels 1 MHz wide, switching
every 0.4 seconds. The loop filter is important for phase
locking. Figure 7 shows the circuit diagram of the loop filter
and Figure 8 the schematic diagram in ADS.

Fig. 7. Schematic of loop filter.

Fig. 8. ADS schematic of loop filter.

The loop filter is needed to remove any unwanted high
frequency components which might pass out of the phase
detector and appear in the VCO tune line. They would then
appear on the output of the VCO as spurious signals. The
filter affects the ability of the loop to change frequencies
quickly. With very low cutoff frequency, changes in tune
voltage will only take place slowly, while higher cutoff
frequency results in quicker frequency changes.

The phase margin of the loop filter is very important as it
determines stability. The phase margin should be greater than
45° for stable operation. If the phase margin is too large, it
slows down the frequency locking process. Therefore, a
balanced value is required.

The following steps were taken in the loop filter design
process:

1. Determine the maximum dividing ratio N.
() ()Max VCO Freq / Channel SpacingN =

2. Calculate natural frequency.

1 ln
2

a
n

s step

ff
t fπ ζ

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

3. Calculate capacitor C2.

()2 22
cp VCO

n

I K
C

f Nπ
=

 4

4. Calculate resistor R1.

1
2

2
cp VCO

NR
I K C

ζ=

5. Calculate C1.

1 20.1C C=
6. Calculate R2 and C3.

R2 and C3 are used to reduce any spurs cause by the

reference frequency. The product of R2 and C3 should be at
least 1/10 the product of C2 and R1. Table 4 shows the values
for components of the loop filter.

Table 4. Loop Filter Component Values

Loop Filter Component Optimized Value
N 5762
C2 3nF
R1 4.7k
C1 .15nF
R2 1k
C3 0.1nF

Figures 9 and 10 show the output voltage and phase
responses of the loop filter respectively. Bandwidth is 38.2
kHz and the phase margin 57.6°, which meet the criteria for
the stability of the PLL.

Fig. 9. Loop filter output voltage.

F. PLL Programming
The microcontroller used here is the 18F4520, one of the

PIC microcontroller families. The PIC was to provide
necessary data for the PLL in order to perform frequency
hopping. Based on the specifications, the operation frequency
includes the 5.725 – 5.850 GHz ISM (unlicensed) band.
There are 75 channels spaced 1 MHz apart. Also, a maximum
0.4 s dwell time on 1 carrier frequency is tolerated during a
30s interval. Based on the PLL chip, there are three signals
that are needed for PLL programming named latch enable
(LE), data, and clock. The timing diagram is shown in Figure
11.

Fig. 10. Loop filter phase response.

Fig. 11. Timing diagram for PLL programming.

The required data is sent in serial (SPI) to the PLL with the
LSB bit sent first. Programming the PLL consists of 4 steps:

1. Do a function latch load (10 in two LSBs). As part of
this, load 1 to the F1 bit. This enables the counter reset.
2. Do an R counter load (00 in two LSBs).
3. Do an AB counter load (01 in two LSBs).
4. Do a function latch load (10 in two LSBs). As part of
this, load 0 to the F1 bit. This disables the counter reset.

Therefore the code should provide the values of the function

latch, R counter and AB counter. The crystal oscillator
frequency is 20 MHz, but the reference frequency for the PLL
was chosen to be 1 MHz because in the integer-N synthesizer
the output frequency step is equal to the reference signal. As
the frequency step at the output should be 1 MHz, this was
chosen as the reference signal. A divider was needed to
divide the crystal oscillator frequency by 20.

The value of the function latch and reference latch are
always constant because for frequency hopping only the AB
counter value was changed. Figure 12 shows the divider
block diagram. The prescaler value was selected to be 64 i.e.
p=64. By having B=89 and A=29 the divider value will be
N=BP+A=5725. By considering the 1 MHz reference
frequency the output frequency will be 5.725 GHz. To output
the next channel the divider number should be incremented by
one. Therefore the A counter will change from 29 to its
maximum of 63 and provide 35 channels. After that the B
counter becomes 90 and the A starts from 0 to 39 to provide
the other 40 channels. By knowing these values the R and AB
latch values have been determined.

 5

Fig. 12. Frequency divider block diagram. (PLL datasheet)

In the AB counter latch the first two bits (LSB bits) are
devoted to the control bits, and the next 6 bits are A values
and the other 13 bits B values as shown in the PLL datasheet.
Therefore when the value of A increases for one step then the
value of the AB register should change by 4 steps. By this
method the different values for the AB counter were
determined and are generated in the code.

G. PIC Code
The algorithm of frequency hopping on which the code is

based is shown in Figure 13. A full code listing is provided in
Appendix C. Port B of the PIC is used for communication
with the PLL. The PortB.0 is devoted to the clock, PortB.1 is
for data, and PortB.1 is devoted to the LE for the PLL. In the
main code there is a loop which always calls the function
program_pll() (In the header file the functions are defined
along with the different values for the function latch, R
counter latch and AB counter latch). In this function the PLL
is programmed 75 times, after which it exits, returning to the
main program. Thus, frequency hopping is executed
indefinitely. In the program_pll() function, an array named
pll_bytes is defined containing the different values of the R,
AB counters, and function latch. There is a loop in which
each bit is determined, and the data is clocked into the PLL.
After this loop sending the necessary data of the function
latch, R counter latch, AB counter latch and again the function
latch, another loop is used to provide a delay of 0.4 seconds.

In the function latch of the PLL there are 3 bits named the
“Mux out control.” These bits were set to serial data output so
that when data is received by the PLL, it can be visually
monitored on an oscilloscope. In measurement the data was
visible every 0.4 seconds, meaning the PLL was successfully
programmed.

Fig. 13. Block diagram of frequency hopping PIC code.

III. SYSTEM TESTING
 The microcontroller was tested to make sure the code was
working properly. Figure 14 shows the latch enable output of
the PIC microcontroller. The LE, which is normally high,
should be zero every 0.4 seconds to send data. In this figure it
can be seen that every 0.4 second latch enable becomes zero
for a short time.

Fig. 14. Signal observed on LE pin.

The clock output of the microcontroller is shown in Figure
15. Based on this figure every 0.4 second there are some
clock signals for sending data, then nothing. These signals
show that the code is correct and the microcontroller is
working well.

 6

Fig. 15. Microcontroller clock output.

Fig. 16. VCO free running frequency as seen on spectrum
analyzer.

 The following steps were taken in testing the signal
generator:

‐ The output of PIC microcontroller was tested on
oscilloscope. The correct signals for clock, latch
enable and data were observed. Clock and latch
enable signals were writing the data in PLL after 0.4
seconds.

‐ VCO was working correctly; the free running
frequency was observed on the spectrum analyzer
shown in Figure 16.

‐ Locking and frequency hopping were seen for some
time, but then some problem occurred.

‐ The PLL was programmed using three different
methods suggested in the PLL data sheet.

‐ The PLL chip was replaced due to possible damage
from the signal provided by the powerful crystal
oscillator.

‐ An external ref-in signal generator with low voltage
values was used to ensure that PLL ref-in was getting
the proper voltage.

‐ For testing, data at MUX out was sent. The correct
data was received, meaning the PLL was correctly
programmed.

‐ Another loop filter with better phase margin was
implemented to ensure if there was any instability
because of inadequate phase margin. A phase margin
of about 57° was achieved.

IV. CONCLUSIONS
The PLL can accept a signal at the RF-IN port with

minimum strength -5 dBm. Our output after the power divider
was -15 dBm. Thus, the signal with -15 dBm strength would
be too weak for the PLL to read. There may be some problem
in the board because of which the signal with strength better
than -5 dBm was not available for the proper operation of the
PLL. The problem seems to be in the layout from VCO
output to power divider where there is a weak signal. This
problem may be in the capacitor, which may not be operating
correctly at 5.8 GHz.

REFERENCES

[1] D. M. Pozar, Microwave Engineering, 3rd ed. Hoboken: John Wiley,

2005.
[2] Georgia Tech IEEE Student Branch Hardware Team:
http://hardware.gt-ieee.org/resources/pic44board-1

BILL OF MATERIALS

Component xQuantity Part Number/Description
3.3 V Reg. x1 AP1117E33GDIDKR
5.0 V Reg. x1 LM7805CT-ND
PLL x1 ADF4107BRUZ
VCO x1 ROS-5776-119+
RF Amplifier x2 GALI-39+
Crystal Oscillator x1 ECS-3953M-BN
PIC Connector Board x1 PIC44 ([2])
60 mil FR4 board x1 www.barebonespcb.com
Low frequency caps SMT Zone cap kits
High frequency caps Dielectric Labs C06 series
Inductors SMT Zone inductor kits
Resistors SMT Zone resistor kits

 7

Appendix A: PCB Schematic

 8

Appendix B: PCB Layout

Band Pass Filter

RegulatorsRegulators

Power
Divider

VCO

PLL
XCO

RF Amp

RF Amp

Band Pass Filter

 9

Appendix C: PIC Code

/**
/* Freq_Hop serial programming routine
/* for PIC18F4520
/***/
/**
/* Freq_Hop serial programming routine header
/* for PIC18F4520
/***/
#include "config_18f4520.h"
#include <p18f4520.h>
#include "Freq_Hop.h"

void main() {
/***
 * Disable Interrupts during configuration
 */
 PIE2 = 0; // B4=EE B3=BCL B2=LVD B1=TMR3 B0=CCP2
 PIE1 = 0; // B7=PSP B6=AD B5=RC1 B4=TX1 B3=SSP B2=CCP1 B1=TMR2 B0=TMR1
 INTCON = 0;
 /* IO Ports configuration
*/
 TRISA = 0b00111111; //set TRIS to all inputs before setting initial value, port A is 6 bits wide
 PORTA = 0b00000000; //Set initial value for PORTA
 TRISA = 0b11111111; //Set I/O for PORTA as input (1) or output (0)

 TRISB = 0b11111111; //set TRIS to all inputs before setting initial value, port B is 8 bits wide
 PORTB = 0b00000000; //Set initial value for PORTB
 TRISB = 0b11110000; //Set I/O for PORTB as input (1) or output (0)

 TRISC = 0b11111111; //set TRIS to all inputs before setting initial value, port C is 8 bits wide
 PORTC = 0b00000000; //Set initial value for PORTC
 TRISC = 0b11111001; //Set I/O for PORTC as input (1) or output (0)

 TRISD = 0b11111111; //set TRIS to all inputs before setting initial value, port D is 8 bits wide
 PORTD = 0b00000000; //Set initial value for PORTD
 TRISD = 0b11111111; //Set I/O for PORTD as input (1) or output (0)

 TRISE = 0b00000111; //set TRIS to all inputs before setting initial value, port E is 3 bits wide!
 PORTE = 0b00000111; //Set initial value for PORTE
 TRISE = 0b00000111; //Set I/O for PORTE as input (1) or output (0)

 ADCON1 = 0b00001111; // Make all ADC/digital pins digital

while (1)
 {
 program_pll();
 }
 }

/**
/* Freq_Hop serial programming routine header
/* for PIC18F4520
/***/
#ifndef __Freq_Hop_H
#define __Freq_Hop_H

 10

#include <p18f4520.h>

#define SCLK LATBbits.LATB0
#define SDATA LATBbits.LATB1
#define LE LATBbits.LATB2
#define TEST LATBbits.LATB3
//#define SYNC PORTAbits.RA2
#define BIT7 0b10000000
#define BIT6 0b01000000
#define BIT5 0b00100000
#define BIT4 0b00010000
#define BIT3 0b00001000
#define BIT2 0b00000100
#define BIT1 0b00000010
#define BIT0 0b00000001
#define PLLROWS 4
#define PLLCOLS 3

#define clockset() (SCLK = 1)
#define clockclr() (SCLK = 0)
#define dataset() (SDATA = 1)
#define dataclr() (SDATA = 0)
#define pllen() (LE = 0)
#define plldis() (LE = 1)
//#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); } // define a delay
extern unsigned int DELAY;
typedef unsigned char byte;

 const static byte latchR[1][3]= {
 0x50,
 0x00,
 0x02
 };
static byte latchN[1][3]= {
 0x75,
 0x59,
 0x00
 };
 const static byte latchF[1][3]= {
 0xE6,
 0x80,
 0xDF
 };
const static byte latchI[1][3]= {
 0xE2,
 0x80,
 0xDF
 };
// set pll for 5.75 GHz
static byte pll_bytes[PLLROWS][PLLCOLS]= {
 {
 0xE6,
 0x80,
 0xDF
 },
 {
 0x50,
 0x00,
 0x02

 11

 },
 {
 0x75,
 0x59,
 0x00
 },
 {
 0xE2,
 0x80,
 0xDF
 }
};

void program_pll(void) {

 byte j,k,m,bangthis;
int i=0;
int p=0;
int n=0; //use to track 75 different frequencies
 n=0;
 latchN[0][0]=0x75;
 latchN[0][1]=0x59;
 latchN[0][2]=0x00;
 for(n=0; n < 75; n++) {
 clockclr();

 for(j=0; j < PLLROWS; j++) {
 pllen();
 for(m=0; m < PLLCOLS; m++) {
 bangthis = pll_bytes[j][m];
 for(k=0; k<8; k++) {
 if ((bangthis & BIT0) != 0) {
 dataset();
 } else {
 dataclr();
 }
 clockset();
 for(i=0;i<=5;i++)
 {
 ;
 }
 clockclr();
 for(i=0;i<=5;i++)
 {
 ;
 }
 bangthis = bangthis >> 1;
 } // for k
 } // for m

 if (j == 2) {

 if (pll_bytes[2][0] != 0xFD) {
 pll_bytes[2][0] +=4; //we are changing the A value of the counter
 }
 else {
 pll_bytes[2][1]=0x5A; // The value of the counter B should be changed because the Counter A will overflow
 pll_bytes[2][0]=0x01;
 }

 12

 }
 plldis();

 } // for j
TEST = 0;
//int i=0;
for(i=0;i<=500;i++)
{
for (p=0;p<=200;p++)
;
}
//Delay(102000);
TEST = 1;
} // for n
//} // for while
} // program_pll

#endif

