Class Description:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Cr Hrs</th>
<th>Instructor</th>
<th>Days</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE-6390</td>
<td>Satellite Communications</td>
<td>3</td>
<td>Greg Durgin</td>
<td>T Th</td>
<td>4:35 to 5:55 pm</td>
<td>Klaus 1456</td>
</tr>
</tbody>
</table>

ECE 6390 Satellite Communications and Radiolocation

A first-principles discovery of how satellite and radiolocation systems are designed and deployed. Topics include orbital mechanics, propagation, digital transmission, global positioning system, and other radiolocation issues. Course is taught from first principles and will allow the student to analyze any physical-layer wireless systems.

Instructor: Gregory D. Durgin
Office: 507 Van Leer
Office Hours: TBD
E-mail: durgin@ece.gatech.edu
Office Phone: (404) 894-2951
Class Web Page: http://www.propagation.gatech.edu/ECE6390

Prerequisites: Graduate standing and some background in electromagnetics (ECE 3025 and/or 3065) and basic signal processing (ECE 2025). Elective work in antennas and digital communications is often helpful.

Grading:

10% Homework – Expect several homework assignments over the course of the semester. Late homework is not accepted.

55% Midterm Quizzes (3) – There will be 3 in-class quizzes, each testing material covered since the previous midterm quiz. The two highest midterm scores will count 20% each toward the final class grade; the lowest midterm score will only count 15% toward the final class grade.
35% Final Project – A final project will be assigned midway through the course. The project is due exam week. **Late projects are not accepted**

Quiz Dates: Quizzes will be administered on the days listed on the course website. Any change to this schedule will be announced with at least one week’s notice.

Computer Usage: The web will be used extensively in this class to disseminate homework assignments, lecture materials, and class announcements.

Some homework assignments may involve the use of Matlab™ software. Most students should have access to this software through a university computer lab or their own personal computing packages. If not, please inform the instructor.

Tentative Lecture Topics:

I. Orbital Mechanics
II. Spacecraft Systems
III. Noise and Propagation
IV. Atmospheric Effects
V. Antenna Design
VI. Satellite Modulation
VII. Channel Impairments
VIII. Global Positioning System
IX. Future Navigation Systems
X. Special Topics

Look online for a more detailed listing of course topics from previous sections.

Honor Code: The Honor Code applies to every aspect of this class, with only one noteworthy exception: student discussion of concepts and techniques for solving homework problems is permitted and even encouraged outside the classroom. However, *all submitted work must be original.*