
Lecture Notes Elliptical Orbits

In the previous lecture, we discussed the basics of circular orbits.  Mastering even circular orbits 
provides quite a bit of intuitive behavior about the motion of spacecraft about planets We learnedprovides quite a bit of intuitive behavior about the motion of spacecraft about planets.  We learned 
that orbiting spacecraft speed up as they get closer to their planets, how to classify earth orbits 
based on their altitudes, and touched upon basic trade-offs of these different orbits.

In this lecture, our analysis becomes more general and elegant.  We’ll deal with the general case of 
elliptical orbits using Kepler’s 3 laws.
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Kepler’s laws consist of 3 rules that two-body orbits must satisfy.

The first law states that the orbit of a smaller body (spacecraft) about a larger body (planet or sun) 
is always an ellipse, with the center of mass of the larger body as one of the two foci.  Above is the 
mathematical description of an elliptical path (use lower formula).  Recall from geometry that the 
e-parameter is eccentricity, a measure of how oblong the ellipse is.  Always between the values of 
0 and 1, inclusive, eccentricity of 0 implies a perfect circle (like the number “0”) and an 
eccentricity of 1 implies an ellipse that has been stretched to zero thickness along one directioneccentricity of 1 implies an ellipse that has been stretched to zero-thickness along one direction 
(like the number “1”).

Kepler’s second law states that the orbit of the smaller body sweeps out equal areas in equal time.  
What does this mean?  A space craft in orbit around a planet, regardless of that orbit’s shape, will 
speed up when it is closer to the center of the planet and will slow down when it is further from the 

t Th t th ti l d fi iti i l t i t f l t thicenter.  The swept area mathematical definition is an elegant, precise way to formulate this 
principle; we see this at work trivially in the case of circular orbits where the “pie-slice area” 
swept out was constant at all points of the orbit.
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Kepler’s third law allows us to compute the period of a satellite in elliptical orbit given its 
geometrical propertiesgeometrical properties.

Consider the geometry of an ellipse as described by its semi-major axis (a) and its semi-minor axis 
(b).  The greater the eccentricity, the large (a) becomes relative to (b).  In fact, there is a simple 
relationship (given above)  between all 3 of these quantities.

The planet must rest on one of the foci of this ellipse.  The perigee (on earth; periapsis in the 
general case) is the distance between the origin and the spacecraft at the closest distance to the 
planet.  This distance occurs along the major axis and is basically (1-e)a.  The apogee (on earth; 
apoapsis in the general case) is the distance between the origin and the spacecraft at the furthest 
distance to the planet.  This distance also occurs along the major axis on the opposite end of the 
orbit, for a total distance (1+e)a.  Note that the average of apogee and perigee will always produce 
th i j ithe semi-major axis a.

At apogee and perigee, the orbiting spacecraft has no radial velocity component – all velocity is 
tangential.  Also note that, although the speed of the spacecraft changes during its orbit, there is a 
temporal symmetry about the major axis to its travels.  A journey from perigee to apogee, and vice 
versa, takes exactly one half of a period T.
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It is an unavoidable fact of life in a fallen world that much of learning in a profession is couched in 
specific jargon the language of which often obscures what is actually very simple concepts Inspecific jargon, the language of which often obscures what is actually very simple concepts.  In 
some fields, practitioners take advantage of this jargon and use it as a sort of blockade to any 
novice from entering a profession that is otherwise straightforward and even a little lite on 
concepts (fill in your own joke here).

Normally we engineers and the more practical scientists try to avoid this, but in the case of apsis 
and periapsis it would appear that we have tried to make this as complicated as possible Vastlyand periapsis, it would appear that we have tried to make this as complicated as possible.  Vastly 
different terms are applied to this very simple concept depending on what the spacecraft is 
orbiting.  In fact, it gets so ridiculous, that one usually must delve into the legal profession or the 
field of biology to find this level of nomenclature chicanery.

The terms apsis and periapsis are general; apogee and perigee are applied when the orbit is around 
th h li d ih li li d h th bit i d th d f th Obearth; aphelion and perihelion are applied when the orbit is around the sun; and so forth.  Observe 

the enormous variety in the table above.  As soon as scientists discover something new to orbit 
around, they feel compelled to invent new terminology to re-describe an ellipse.

Particularly humorous is the apparent multiplicity of orbital terms for black holes.  We’ve never 
sent a satellite into orbit about a black hole and likely have no intentions of doing so for the next 
f ill i d t th t l d i t th ti t i l i f h
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An initial rocket stage launches satellites into LEO.  From there, depending on how high the final 
orbit is a transfer orbit or trajectory is required to move the satellite into its final orbit Aorbit is, a transfer orbit or trajectory is required to move the satellite into its final orbit. A 
Hohmann transfer orbit is one such example, commonly used because of its low-energy 
requirements and short transit time.

The Hohmann transfer orbit requires a short, energetic burst of thrust from the spacecraft in LEO.  
By adding kinetic energy at what is nearly a single point in the orbit (Point A), the spacecraft has 
been transferred to an elliptical orbit, swinging round the planet to a much higher altitude at 
apogee (Point B). Another burst of thrust at the apogee of the elliptical orbit transfers theapogee (Point B).  Another burst of thrust at the apogee of the elliptical orbit transfers the 
spacecraft into a higher-energy orbit.  If the amount of thrust is carefully calculated, this orbit can 
be “circularized” and the final MEO, GEO, or HEO achievied.

The Hohmann transfer requires minimal energy because both thrusts occur parallel to the direction 
of spacecraft travel (recall that at perigee and apogee of the elliptical orbit, the spacecraft only has 
a radial velocity component).  The transfer does not waste any energy changing directions of the 
spacecraft – only in bringing the kinetic energy of the craft up to the level to maintain first the 
elliptical orbit and then the circular orbit.  

The Hohmann transfer is also relatively expedient.  Although the spacecraft could be placed 
indefinitely into the elliptical transfer orbit for any number of cycles before performing the transfer 
to the target orbit, it only takes half a period T to complete the journey to the final trajectory in 
space.  
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Let us calculate the eccentricity of this required transfer orbit.  We know that perigee is at 1000 km 
+ 6380 km and that apogee is 20 200 km + 6380 km See above for how to solve for eccentricity+ 6380 km and that apogee is 20,200 km + 6380 km.  See above for how to solve for eccentricity 
in terms of perigee and apogee.

Now we can use Kepler’s third law to calculate the total transit time.  The formula predicts a total 
period of 22,000 seconds, but we only need half the period (3 hours and 3 minutes) to achieve the 
final orbit.  Once at its final circular orbit at 26,580 km from the center of the earth, the satellite 
will be full of potential energy, but require “only” 3.8 km/s.

The Hohmann transfer is one of the most common transfer orbits used in spacecraft deploymentThe Hohmann transfer is one of the most common transfer orbits used in spacecraft deployment, 
but other types are possible.  A High Energy transfer could be used to speed things up; in this case, 
more thrust is generated at point A, allowing the spacecraft a shorter, faster trajectory to the target 
orbit. Once it achieves final orbit however, the spacecraft would have to spend quite a bit of fuel 
braking and changing its velocity vector to achieve the circular trajectory about the planet.  

Other low-energy transfers are possible, where the spacecraft fires engines continuously at point A 
and spirals slowly out to the final orbit These orbits are typically reserved for spacecraft withand spirals slowly out to the final orbit.  These orbits are typically reserved for spacecraft with 
low-power drives (such as ion enginees).
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Let’s cut our new-found powers of orbital analysis on a deep space mission.  Above is a diagram 
charting the trajectory of the proposed Juno mission to Jupiter A gravitational slingshot is acharting the trajectory of the proposed Juno mission to Jupiter. A gravitational slingshot is a 
method for propelling a spacecraft toouter planets without using extraordinary amounts of fuel, 
cost, and propulsion complexity.  Under most circumstances, the orbit of a satellite around the 
solar system is an ellipse with the massive sun at one of the focii. The sun provides the principle 
gravitational forces to maintain the orbit, unless the spacecraft approaches very close to a planet. 
For a brief time period, the spacecraft can get a “free" boost in its relative velocity with respect to 
the sun by getting “slung forward" by the nearby gravity well of a planet in motion. This will 
transfer the satellite to a higher orbit without firing thrusters. Conservation of energy still holds –
the spacecraft is simply borrowing some of the momentum of the massive, moving planet.

Above is a series of approximate proposed slingshot and orbits for use in NASA's Juno mission to 
Jupiter, with a proposed launch in August 2011. The spacecraft will first travel a full elliptical orbit 
with aphelion of Raph back to Earth to receive its slingshot. After this boost, the spacecraft 
completes a half-orbit that will rendezvous with Jupiter. Clearly, this is a very effective albeit time-

i th d f t li t di t t l t B l i di f J ' i t thconsuming method for traveling to distant planets.  Below is a diagram of Juno's approximate path 
through the solar system, as well as all the pertinent planetary data. Estimate the year and month 
that the spacecraft  first arrived at Jupiter. 

Also, why did the designers pick this precise value of Raph?
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If we approximate these as Hohmann-like transfers (where the thrust is borrowed from the planets 
instead of propulsion drives) then we can make a series of estimates for each leg of the tripinstead of propulsion drives) then we can make a series of estimates for each leg of the trip.

Leg 1:  A single elliptical period from earth to earth (2 years)

Leg 2:  Another half-elliptical period from earth to Jupiter (2 years and 9 months)

Note that with this crude model, we can estimate that the trip would take 4 years and 9 months.   
This would place arrival time at Jupiter in mid-May of 2016.  The actual NASA predictions state 
an arrival date of 19 October 2016.  The extra 5 months is a function of less-than-ideal 
assumptions made by our analysis (there are not perfectly aligned half-ellipses in the transfer orbit) 
along with some mid-journey planned thrusting adjustments.

Note that the value of Raph is non-negotiable.  If we ran the calculations, we would find that the 
period for that orbit is exactly 2 years.  Why?  Because when the spacecraft returns to perihelion, it 
needs to encounter the earth again if it is to slingshot to a higher level orbit.  Thus, an integer 
number of n years needs to elapse before the spacecraft returns to this point.  Since n=1 is not 

ibl d l l ld lt i lli ti l bit ith h li b d J it ( dpossible, and an overly large n would result in an elliptical orbit with aphelion beyond Jupiter (and 
likely too much energy for a realistic single slingshot), n=2 seems like a nice compromise.
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