A Short Introduction to Radio Astronomy

and the ALMA Observatory (for Engineers)

Juan Pablo Caram - jpcaram@gatech.edu - 2011 School of Electrical and Computer Enginering

"Radio Astronomy" as in radio waves from the stars?

• Every object at a temperature above 0 Kelvin radiates electromagnetic waves.

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2$$
$$= P_t + G_t + G_r + 20\log_{10}\left(\frac{\lambda}{4\pi R}\right)$$

What can we "see" at millimeter-wave frequencies?

- Chemical compounds and reactions
- Colder (older and further away) sources
- Easier to analyze!

GeorgiaInstitute

Technologiv

How do we observe radio sources?

- No CCD/CMOS sensors. Wavelength are too large. No lenses.
- Use very directional antennas, and ultra-sensitive ultrabroadband receivers.
- Antenna Arrays and interferometry: Like an image sensor, but without a lens.
- Need to accurately measure relative phase and amplitude at every antenna.
- Spectral analysis and image synthesis.

The Atacama Large Millimeter/Sub-millimeter Array

Georgia Institute of Technology

A Global Project

GeorgiaInstitute of **Tech**nology

GeorgiaInstitute of **Tech**nology

GeorgiaInstitute of **Tech**nology

GeorgiaInstitute of **Tech**nology

Basics of ALMA Electronics & Interferometry

Basics of ALMA Electronics & Interferometry

Juan Pablo Caram - 2011 School of Electrical and Computer Enginering

Georgia Institute of Technology

Georgia Institute of Technology

Not to scale!

Holography

GeorgiaInstitute

of **Technology**

The Receiver

Georgia Institute of Technology

Front End

- 1st Down-conversion
- 1st LO Synthesis

Band Cartridge

Reference Signals

• All reference signals combined and delivered through 1 single-mode fiber.

Georgia Institute of Technology

Line-Length Correction

Correlator

Final Products

Power Spectrum Example: First Interferometric Spectrum at the ATF, Orion Hot Core (19 January, 2008)

GeorgiaInstitute of **Tech**nology

Final Products

19 Antennas

Juan Pablo Caram - 2011

chool of Electrical and Computer Enginering

Georgia Institute of Technology

Juan Pablo Caram - 2011

titititi

Georgia Institute of Technology

Credits: Some material has been taken from the ALMAObservatory.org website. Please visit for further credit details.