
ECE 6390 Homework 3: Waves and Link Budgets

Solutions

Problem 1: Wave Equation

Show that the plane wave and spherical wave solution forms for electric field solve the Helmholtz
wave equation in a simple, source-free medium. Are there any other assumptions that must be
made? (5 points)

Solution

The Helmholtz equation is:

(∇2 + k2) ~̃E = 0 ⇒ ∇2 ~̃E = −k2 ~̃E

The time independent, phasor form of a plane wave is:

~̃E = ~E0e
−j~k·~r = ~E0e

−j(x~k·x̂+y~k·ŷ+z~k·ẑ)

The vector Laplacian in Cartesian coordinates is calculated by taking the scalar Laplacian of each
coordinate:

∇2 ~̃E = x̂∇2( ~̃E · x̂) + ŷ∇2( ~̃E · ŷ) + ẑ∇2( ~̃E · ẑ)

Calculate the Laplacian for one coordinate (̂i = x̂, ŷ, ẑ)(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
( ~E0 · î)e−j(x

~k·x̂+y~k·ŷ+z~k·ẑ) =

−
[
(~k · x̂)2 + (~k · ŷ)2 + (~k · ẑ)2

]
( ~E0 · î)e−j(x

~k·x̂+y~k·ŷ+z~k·ẑ)

So the total vector Laplacian is:

∇2 ~̃E = −
[
(~k · x̂)2 + (~k · ŷ)2 + (~k · ẑ)2

]
︸ ︷︷ ︸

−||~k||2

[
( ~E0 · x̂)x̂+ ( ~E0 · ŷ)ŷ + ( ~E0 · ẑ)ẑ

]
︸ ︷︷ ︸

~E0

e−j(x
~k·x̂+y~k·ŷ+z~k·ẑ)

= −||~k||2 ~̃E

So the particular plane wave we considered satisfies the Helmholtz equation when magnitude of the
wavevector (the wavenumber) matches the constant k from the equation (when ||~k|| = k). Now
consider the form of a spherical wave:

~̃E = E0(φ, θ)
e−jkr

(r/λ)
ê = E0(φ, θ)

αe−jkr

(r/λ)
φ̂+ E0(φ, θ)

βe−jkr

(r/λ)
θ̂



Note that we’ve taken the direction of the field vector as having arbitrary φ and θ components,
i.e. ê = αφ̂ + βθ̂. The vector Laplacian in spherical coordinates is rather complex. Component by
component, it is:

r̂ · ∇2 ~̃E = ∇2Er −
2Er
r2
− 2 cot θ

r2
Eθ −

2
r2
∂Eθ
∂θ
− 2
r2 sin θ

∂Eφ
∂φ

(1)
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∂Eφ
∂φ

(2)

φ̂ · ∇2 ~̃E = ∇2Eφ +
2

r2 sin2 θ

∂Er
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− Eφ
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+

2 cos θ
r2 sin2 θ

∂Eθ
∂φ

(3)

We’ll need the scalar Laplacian operator expressed in spherical coordinates:

∇2 =
1
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∂
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∂
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)
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∂
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We’ll start with a large simplification; we will neglect any terms that will have an r dependence
which drops off faster than 1/r. For our case, Er = 0 as we can see it has no r̂ component. Using

these two conditions in (1), its clear that see that r̂ · ∇2 ~̃E ≈ 0. As for (2) and (3), we’ll similarly
neglect all the terms except the one involving the scalar Laplacian, since those all fall off as 1/r3.
So:

θ̂ · ∇2 ~̃E ≈ ∇2Eθ =
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E0(φ, θ)

βe−jkr
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Now again, neglect the terms with 1/r2 dependence, giving the simplification:

θ̂ · ∇2 ~̃E ≈
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)
Finally, neglecting the 1/r2 terms again, we have:

θ̂ · ∇2 ~̃E ≈ −k2E0(φ, θ)
βe−jkr

r/λ
= −k2Eθ

The same series of approximations, and the exact same calculations, yeild the same result for the φ̂
component:

φ̂ · ∇2 ~̃E ≈ ∇2Eφ ≈
[

1
r2

∂

∂r

(
r2
∂

∂r

)]
Eφ ≈ −k2Eφ

The two components, φ̂ and θ̂ togehter show that ∇2 ~̃E ≈ −k2 ~̃E for this spherical wave.
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Problem 2: Plane Wave

Below is the electric field solution for a free-space plane wave:

~̃E(~r) = 10 [3x̂− 4ŷ + 5ẑ] exp(−j[2x̂− ŷ − 2ẑ] · ~r) mV/m

(a) What is the corresponding ~̃H(~r) that accompanies this electric field? What is the wavelength
of this plane wave? (5 points)

(b) If ẑ corresponds to the vertical direction, x̂ corresponds to due east along the horizon, and ŷ
corresponds to due north along the horizon, what look angle (azimuth and elevation) should
you use to point a dish antenna for receiving this wave? (5 points)

Solution, part (a)

First recognize that the field is of this form:

~̃E(~r) = E0ê exp(−j(φ0 − kk̂ · ~r))

And the magnetic field for a plane wave will have this this form:

~̃H(~r) =
E0

η
(k̂ × ê) exp(−j(φ0 − kk̂ · ~r)) (4)

From the given plane wave, we identify the parameters:

E0 = 10
√

32 + 42 + 52 = 50
√

2 ê =
3x̂− 4ŷ + 5ẑ

5
√

2
φ0 = 0

k =
√

22 + 12 + 22 = 3 k̂ =
2x̂− ŷ − 2ẑ

3
Now we can calculate the wavelength:

λ =
2π
k

=
2π
3

m

Now calculate the direction:

k̂ × ê =
2x̂− ŷ − 2ẑ

3
× 3x̂− 4ŷ + 5ẑ

5
√

2
=

1
15
√

2
(−8ẑ − 10ŷ + 3ẑ − 5x̂− 6ŷ − 8x̂) =

−13x̂− 16ŷ − 5ẑ
15
√

2

And plug this along with the other known quantities into (4):

~̃H(~r) =
50
√

2
η

−13x̂− 16ŷ − 5ẑ
15
√

2
exp(−j[2x̂− ŷ − 2ẑ] · ~r)

Simplifying and plugging in the free space impedance η ≈ 120π:

~̃H(~r) =
1

36π
(−13x̂− 16ŷ − 5ẑ) exp(−j[2x̂− ŷ − 2ẑ] · ~r) mA/m
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Solution, part (b)

To receive this wave, the dish vector (the direction in which it points) should be the negative of the
wavevector so that the dish faces the incident wave:

r̂ = −k̂ =
−2x̂+ ŷ + 2ẑ

3

The azimuth and elevation of such a vector in standard spherical coordinates are:

θ = cos−1

 rz√
r2x + r2y + r2z

 = cos−1

(
2
3

)
≈ 48.190◦

φ = tan−1

(
ry
rx

)
= tan−1

(
1
−2

)
≈ 153.43◦

Finally, we measure elevation up from the horizon, not down from the z axis, so:

Elevation angle: 90◦ − θ ≈ 41.810◦ Azimuth angle: φ ≈ 153.43◦

Problem 3: Mission to Saturn

The planet Saturn is 1.2× 109 km from Earth at the time a NASA space probe must communicate
back to an earth station using a 28 GHz carrier with a minimum received power of -105 dBm. If the
satellites transmit amplifier maximum output power is 500 W and the Earth stations receiver dish
antenna must be 20 times larger in electromagnetic area than the transmitter antenna (implying 13
dB greater antenna gain), at least how much gain must the satellite dish antenna have? (5 points)

Solution

Start with the link budget equation in a dB scale:

Pr = Pt +Gt − 20 log
(

4πfd
c

)
+Gr (5)

Known relationships:

d = 1.2× 1012m f = 28× 109Hz Pr ≥ −105dBm

Pt = 10 log
(

500
0.001

)
≈ 57dBm Gr = Gt + 13 c ≈ 3× 108 m/s

The only unknown is then Gt, plug the known quantities into (5) and solve for Gt:

−105 ≤ 57 +Gt − 20 log
(

4π(28× 109)(1.2× 1012)
3× 108

)
︸ ︷︷ ︸

≈303

+Gt + 13

Gt ≥
−105− 57 + 303− 13

2
= 64dBi

Gt ≥ 64dBi
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Problem 4: Stealing WiFi

Albert lives in a quiet valley in North Georgia where he operates a winery and vineyard. Set apart
from civilization, he has no access to cable, DSL, phone lines, or any other wired conduit of internet
access. But Albert is a crafty graduate of the Georgia Institute of Technology and devises a clever
way to steal WiFi service from the nearby town of Unprotectedlinksville, population 53. This town is
10 kilometers away from Albert, on the other side of a large mountain, and has several unprotected
home WiFi servers broadcasting local internet service. His plan is to purchase 3 identical dish
antennas that operate at 2.45 GHz and arrange them in the following configuration:

5 km

dish 1 dish 2

dish 3

Town

Mountain

Albert’s

house

5 km

With this set-up, a signal will propagate from the town to the first dish in the link, which is pointed
toward the town. The received power of this dish is piped directly to another dish which is pointed
towards Alberts vineyard. Thus, this pair of dish antennas acts like a passive repeater that does
not require any power or maintenance. A third dish is mounted on top of Alberts home, where a
minimum value of -95 dBm must be received in order to maintain a wireless internet link on his
home computer. Answer the following questions assuming matched and lossless cables. Assume that
the antenna gain of the WiFi access point in town is 5 dBi, that the transmit power of this link is
30 dBm, and that both links are essentially free space.

(a) What is the minimum gain in dBi of these antennas to make this system work? (5 points)

(b) If these are ideal circular dishes with 100% efficiency, what is the minimum dish radius based
on your answer in part (a)? (5 points)

Solution, Part (a)

There are two link budgets to consider, one from the town to the mountain, and one from the
mountain to the vineyard:

Town to Mountain: Pr1 = Pt +Gt − 20 log
(

4πfd1

c

)
+Gr1 (6)

Mountain to House: Pr = Pt2 +Gt2 − 20 log
(

4πfd2

c

)
+Gr3 (7)

The received power at dish 1 is the transmit power of dish 2, since the problem says the pair act as
a passive, lossless repeater:

Pr1 = Pt2 (8)

Also, dishes 1, 2, and 3 are identical, so their gains are all the same, call it G:

Gr1 = Gt2 = Gr3 = G (9)
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The approach then is to solve (7) for Pt2, then plug this and (6) into (8), subject to (9):

Pt +Gt − 20 log
(

4πfd1

c

)
+G = Pr −G+ 20 log

(
4πfd2

c

)
−G

Solving for G:

G =
1
3

(
Pr + 20 log

(
4πfd2

c

)
− Pt −Gt + 20 log

(
4πfd1

c

))
(10)

The known quantities from the problem statement are:

d1 = d2 = 5000m f = 2.45× 109Hz Pr ≥ −95dBm Gt = 5dBi Pt = 30dBm c ≈ 3× 108

Plugging it all into (10)

G ≥ 1
3

(
−95 + 40 log

(
4π(2.45× 109)(5000)

3× 108

)
− 30− 5

)
≈ 32.8dBi

So the dish needs at least 32.8dBi of gain.

Solution, Part (b)

Recall the following relationship between antenna aperture and gain in the linear scale:

A =
Gλ2

4π

If we assume 100% efficiency, the antenna aperture is the physical area. Assuming a circular dish:

A = πr2 =
Gλ2

4π
⇒ r =

√
Gλ2

4π2
=

√
Gc2

4f2π2
=

c

2πf

√
G

Known quantities (remembering to go to the linear gain):

c ≈ 3× 108 f = 2.45× 109Hz G = 1032.8/10 ≈ 1905

Which means a circular dish with the following radius gives this amount of gain:

r =
(3× 108)

2π(2.45× 109)

√
1905 ≈ 0.85m
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