Advanced Topics in Analytical Electromagnetics ECE 8833 – Fall 2007

Class Description:

Course	Title	Cr Hrs	Instructor	Days	Time	Location
ECE-8833	Advanced Topics in Analytical EM	3	Greg Durgin	T Th	9:35	TBD

ECE 8833 Advanced Topics in Analytical Electromagnetics

This class provides an in-depth treatment of several common analytical techniques for framing and solving real-world problems in EM wave propagation. Upon completion of the course, the student will have a high degree of confidence and competence in discussing the fundamental mechanisms of scattering, diffraction, and stochastic propagation with the world's top EM researchers. The final project will be a student-chosen topic involving an application of analytical electromagnetics to real-world wireless, radar, or optical problems.

Instructor:	Gregory D. Durgin	511 Van Leer
	E-mail: <u>durgin@ece.gatech.edu</u>	Office Phone: (404) 894-2951
	Class Web Page: TBD	

Textbook: Course notes will be posted online.

Prerequisites: Suggested prerequisites are graduate standing and some background in graduate-level electromagnetics (ECE 6350 or equivalent).

Grading:

- 20% Homework Expect approximately 4-5 homework assignments over the course of the semester.
- 40% Midterm Quizzes (2) There will be 2 take-home quizzes.
- 40% Final Project A final project will be assigned and collected towards the end of the course. The last week of the course will be reserved for student project presentations.

Computer Usage: The web will be used extensively in this class to disseminate homework assignments, lecture materials, and class announcements. Some assignments may involve the use of Matlabtm or equivalent computational software. Most students should have access to this software through a university computer lab or their own personal computing packages. If not, please inform the instructor.

Tentative Lecture Topics:

I. **Review of Maxwell's Equations and Wave Equations** – One or two lectures will be spent reviewing the basics of wave propagation: vector fields and phasors, vector wave equation, Helmholtz equation, and the plane wave basis.

- II. **Geometrical Optics (GO) and Ray Tracing** Rigorous derivation of GO with classification of eikonal shapes, Gaussian curvatures, and astigmatic problems. Several computational algorithms for ray-tracing complicated environments and radioscapes will also be presented.
- III. **Physical Optics and Physical Theory of Diffraction (PTD)** Babinet's principle and the Kirchoff approximation will then lead into a discussion of scalar and physical theories of diffraction.
- IV. **Sommerfeld Half-Plane Diffraction and Asymptotic Behavior** The famous Sommerfeld solution will be presented with the classical plane wave spectral decomposition method.
- V. **Geometrical Theory of Diffraction (GTD)** Using asymptotic expansions of the Sommerfeld solution, we will demonstrate the three principles of GTD: localization of diffraction phenomena, Fermat's principle for diffracted waves, and diffraction coefficients. Parallels will be draw to other canonical problems as well as Unified Theory of Diffraction (UTD).
- VI. **Scattering from a Conductive Sphere** A look at another classical scattering problem, which will introduce the student to spherical Hankel functions, exact series solution, asymptotic solutions/behaviors, and the Watson transform.
- VII. **Rough Surface Scattering** How to characterize the statistics of a random rough surfaces using height standard deviation, 2D autocorrelation, and wavevector spectrum.
- VIII. **Perturbation Theory Applied to Random Rough Surfaces** Derivation of scattering patterns using perturbation theory applied to "slightly roughened" surfaces. Analogies are drawn to simple and familiar Bragg scatterings.
- IX. **Statistical Characterization of Space-Time Wireless Channels** Describing the complicated wireless channel that results from radio wave propagation that fades in space, time, and frequency.
- X. **First-Order Characterization of Random Wave Interference** The common PDFs (Rayleigh, Rician, etc.) used in the characterization of fading channels and their link to fading mechanisms.
- XI. **Theory of Multipath Shape Factors** Description of the fading statistics of stochastic wave interference in terms of angle-of-arrival statistics; applications are presented in terms of real-world wireless problems.
- XII. **Student Presentations** The last week will be spent with students presenting their year-end projects in front of the class.

Honor Code: The Honor Code applies to every aspect of this class, with only one noteworthy exception: student discussion of concepts and techniques for solving homework problems is permitted and even encouraged outside the classroom. However, *all submitted work must be original.*