Summary of Maxwell's Equations

Maxwell's Equations (Point Form)

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{D} = \rho_V$$

Maxwell's Equations (Integral Form)

$$\oint_{L} \vec{H} \cdot d\vec{L} = \iint_{A} \left[\vec{J} + \frac{\partial \vec{D}}{\partial t} \right] \cdot d\hat{n} \qquad \qquad \iint_{A} \vec{B} \cdot d\hat{n} = 0$$

$$\oint_{L} \vec{E} \cdot d\vec{L} = - \iint_{A} \frac{\partial \vec{B}}{\partial t} \cdot d\hat{n} \qquad \qquad \iint_{A} \vec{D} \cdot d\hat{n} = \iiint_{V} \rho_{V} \, dV$$

Maxwell's Equations (Word Form)

Magnetic fields circulate around currents and changing electric flux densition (monopoles) in the universe.

A change in magnetic flux excites a voltage around the flux perimeter.

Electric charges spawn electric flux.

Quantities and Units

Variable	Units	Technical Name
$ec{E}$	Volts/m	Electric Field
$ec{H}$	$\mathrm{Amps/m}$	Magnetic Field
$ec{D}$	Coulombs/m ²	Electric Flux Density
$ec{B}$	$Webers/m^2$	Magnetic Flux Density
$ec{J}$	$\mathrm{Amps/m^2}$	Current Density
$ ho_V$	Coulombs/m ³	Charge Density (Volume)

Note: Also be able to *recognize* the various forms of Ampere's Law, Faraday's Law, Coulomb's Law, Gauss's Law, the Biot-Savart Law, the Vector Wave Equation, and the Scalar Wave Equation.