## ECE 3065 Homework 2: Matching Lines

1. You have been asked to design the RF front end for a Global Positioning System (GPS) receiver. This RF front end consists of a board with two chips and a coaxial cable. The cable is meant to attach to a monopole receiver antenna that behaves as an independent sinusoidal source at 1575 MHz with a 200 $\Omega$  impedance. This cable then connects to the board, where it feeds a band-pass filter with 200 MHz bandwidth and a 50 $\Omega$  input impedance. Once the out-of-band signals have been filtered, the signal passes to the next device on the board, an RF amplifier that is made from a microwave monolithic integrated circuit (MMIC). This stage has an input impedance of 100-j60 at 1575 MHz. Both devices are soldered to a board that has relative permittivity of  $\epsilon_R = 4$  and a dielectric thickness of 2mm. The entire set-up is sketched in the diagram below. Answer the following questions (10 points each) based on this situation.



- (a) Design the 6cm coaxial cable to match the output of the antenna to the input of the filter using a quarter-wavelength transmission line section. The initial impedance of the coaxial cable on the antenna side should be  $200\Omega$  and the quarter-wavelength section of line should be smaller so as to match the line with the  $50\Omega$  filter input. The inner and outer radii of the coaxial cable are preset to 1 mm and 2 mm, respectively. Since you only have control of the  $\epsilon_r$  of the cable, choose two values (one for the antenna side, one for the load side) and calculate the position of the dielectric medium change in cm along the cable length.
- (b) Design a microstrip line with a stub open-circuit tuner that connects the output of the filter  $(50\Omega)$  with the input of the MMIC amplifier  $(100 j60\Omega)$ . Since the permittivity and board thickness are set, all transmission line impedances are controlled by the

designer through the trace width of the microstrip line. Your answer should include a to-scale engineering drawing of the microstrip lines to be etched onto the surface of the board. Label all dimensions.

Keep in mind that there is more than 1 right answer for this problem. Attach all computations, any Smith Chart work, and graphs or computer codes you use to solve this problem.

|               | L                                             | C                                                  | $Z_0$                                                                                                                                                                                                                  |                              | $v_p$                                    |
|---------------|-----------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|
| Coaxial Cable | $\frac{\mu}{2\pi}\ln\left(\frac{b}{a}\right)$ | $\frac{2\pi\epsilon}{\ln\left(\frac{b}{a}\right)}$ | $\frac{1}{2\pi}\ln\left(\frac{b}{a}\right)\sqrt{\frac{\mu}{\epsilon}}$                                                                                                                                                 |                              | $\frac{1}{\sqrt{\mu\epsilon}}$           |
| Microstrip    | $\frac{1}{Z_0 v_p}$                           | $\frac{Z_0}{v_p}$                                  | $\frac{1}{2\pi}\sqrt{\frac{\mu}{\epsilon_{\rm eff}}}\ln\left(\frac{8b}{a}+\frac{a}{4b}\right)$ $\sqrt{\frac{\mu}{\epsilon_{\rm eff}}}\frac{1}{1.393+\frac{a}{b}+\frac{2}{3}}\ln\left(\frac{a}{b}+\frac{13}{9}\right)}$ | for $a < 2b$<br>for $a > 2b$ | $\frac{1}{\sqrt{\mu\epsilon_{\rm eff}}}$ |

Electrical Properties of Common Transmission Lines

$$*\epsilon_{\rm eff} = \epsilon_0 \left[ \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \frac{1}{\sqrt{1 + 12b/a}} \right]$$