ECE 3065: Electromagnetics

Solutions to TEST 1 (Spring 2005)

1. Short Answer Section (20 points)

(a) critical
(b) isotropic, homogeneous, source-free
(c) $+\infty$
(d) True
(e) splice
(f) inductor, capacitor, short circuit
2. Supermarket Radio Price Tags ($\mathbf{1 0}$ points):

The resistive film is clearly a conductor. If it is close enough to a PEC, then the reflection coefficient will be -1 and no power will be transmitted through the film and into the freezer. This problem has nothing to do with polarization.

3. Tracking Tag (25 points):

The normalized impedance is $0.5+\mathrm{j}$ and, with a 0.043λ segment of line, may be transformed into an impedance of $1+\mathrm{j} 1.6$. At this point, we need to get rid of the j 1.6 with the series stub. In this problem, there happens to be 2 identical stubs in series. No sweat ... just find a length that makes each open circuit transform into -j0.8 each. This distance is 0.144λ and is shown with the rest of the solution on the Smith Chart below.

It is incorrect to find the length of a single stub that produces -j1.6 and simply cut the length in half. Electromagnetically, this actually makes the magnitude of each series stub impedance much larger than 1.6!
4. Circular-Polarized Radio Wave: (45 points)

$$
\tilde{\overrightarrow{\mathrm{E}}}_{i}(\overrightarrow{\mathrm{r}})=\frac{377}{\sqrt{2}}\left(\cos \theta_{i} \hat{\mathrm{x}}-\sin \theta_{i} \hat{\mathrm{z}}+j \hat{\mathrm{y}}\right) \exp \left(-j 4.2\left[\sin \theta_{i} \hat{\mathrm{x}}+\cos \theta_{i} \hat{\mathrm{z}}\right] \cdot \overrightarrow{\mathrm{r}}\right) \mu \mathrm{V} / \mathrm{m}
$$

(a) Wavelength from k :

$$
\lambda=\frac{2 \pi}{k}=1.5 \mathrm{~m}
$$

(b) Brewster angle for water $\left(\epsilon_{r}=81\right)$:

$$
\theta=\sin ^{-1} \frac{1}{\sqrt{1+\frac{1}{81}}}=83.7^{\circ}
$$

(c) Incident magnetic field:

$$
\tilde{\vec{H}}_{i}(\overrightarrow{\mathrm{r}})=\frac{1}{\sqrt{2}}\left(j \cos \theta_{i} \hat{\mathrm{x}}+\hat{\mathrm{y}}-j \sin \theta_{i} \hat{\mathrm{z}}\right) \exp \left(-j 4.2\left[\sin \theta_{i} \hat{\mathrm{x}}+\cos \theta_{i} \hat{\mathrm{z}}\right] \cdot \overrightarrow{\mathrm{r}}\right) \mu \mathrm{A} / \mathrm{m}
$$

(d) Angle-of-Arrival coordinates:

$$
\theta=6.3^{\circ} \quad \varphi=180^{\circ}
$$

(e) Keeping in mind that there is no $\|$ reflection for the Brewster angle,

$$
\tilde{\overrightarrow{\mathrm{E}}}_{r}(\overrightarrow{\mathrm{r}})=j \Gamma_{\perp} \frac{377}{\sqrt{2}} \hat{\mathrm{y}} \exp \left(-j 4.2\left[\sin \theta_{i} \hat{\mathrm{x}}-\cos \theta_{i} \hat{\mathrm{z}}\right] \cdot \overrightarrow{\mathrm{r}}\right) \mu \mathrm{V} / \mathrm{m}
$$

