ECE 3065: Electromagnetics

Solutions to TEST 2 (Spring 2005)

1. Short Answer Section (20 points)

(a) dispersion
(b) Q-factor
(c) TM
(d) small-scale (1) Rayleigh (2)
(e) cut-off
(f) decrease
(g) Q-factor
(h) velocity
(i) Nepers/m
2. Rectangular Waveguide Solution (15 points): Using our standard geometry where \hat{z} points along the axis of the waveguide, one plane wave would propagate in the direction $\left(\varphi=0^{\circ}, \theta=\theta_{0}\right)$ and the other would propagate in the direction $\left(\varphi=180^{\circ}, \theta=\theta_{0}\right)$:

$$
\begin{aligned}
\tilde{\overrightarrow{\mathrm{E}}}(x, y, z) & =\underbrace{E_{0} \exp \left(-j k\left[x \cos \theta_{0}+z \sin \theta_{0}\right]\right) \hat{\mathrm{y}}}_{\text {Plane Wave } 1}-\underbrace{E_{0} \exp \left(-j k\left[-x \cos \theta_{0}+z \sin \theta_{0}\right]\right) \hat{\mathrm{y}}}_{\text {Plane Wave } 2} \\
& =E_{0} \exp \left(-j k z \sin \theta_{0}\right)\left[\exp \left(-j k x \cos \theta_{0}\right)-\exp \left(j k x \cos \theta_{0}\right)\right] \hat{\mathrm{y}} \\
& =-j 2 E_{0} \exp \left(-j k z \sin \theta_{0}\right)\left[\frac{\exp \left(j k x \cos \theta_{0}\right)-\exp \left(-j k x \cos \theta_{0}\right)}{j 2}\right] \hat{\mathrm{y}} \\
& =\underbrace{-j 2 E_{0}}_{E_{m 0}} \sin (\underbrace{k \cos \theta_{0}}_{\frac{m \pi}{a}} x) \exp (-j \underbrace{k \sin \theta_{0}}_{\beta} z) \hat{\mathrm{y}}
\end{aligned}
$$

Compare this to the TE_{10} solution:

$$
\tilde{\overrightarrow{\mathrm{E}}}(x, y, z)=E_{m 0} \sin \left(\frac{m \pi x}{a}\right) \hat{\mathrm{y}} \exp (-j \beta z) \mathrm{V} / \mathrm{m}
$$

3. Radio Link Budget:

(a) First let's calculate the noise power in the receiver:

$$
P_{N}=k T B=\left(1.3807 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)(180 \mathrm{~K})\left(2 \times 10^{6} \mathrm{~Hz}\right)=-4.907 \times 10^{-15} \mathrm{~W} \rightarrow-113.0 \mathrm{dBm}
$$

The received signal level must be at least 12 dB above this threshold. Plugging all of the values into the link budget equation with a path loss exponent of 7.0 results in a distance of 18.2 meters. Common mistakes in this problem included confusing dBW with dBm , using a path loss coefficient of 2.0, and trying to do something with the Shannon Limit instead.
(b) This is simple plug-and-chug with the 12 dB minimum signal-to-noise ratio - just remember to convert to linear scale before plugging it in:

Shannon Limit: $C=B \log _{2}(1+\mathrm{SINR})=\left(2 \times 10^{6} \mathrm{~Hz}\right) \log _{2}\left(1+10^{12 / 10}\right)=8.15 \mathrm{Mbit} / \mathrm{s}$
The stated operating bit rate of $2 \mathrm{Mbit} / \mathrm{s}$ is only 12.3% of this value.
(c) Another way to formulate this question: if the average power of this local area is -76 dBm , what is the probability of dropping below the minimum threshold (-101 dBm from part (a) - I did not penalize students for using a bogus answer from part (a) in an otherwise correct analysis):

$$
\operatorname{Pr}\left\{P \leq P_{\min }\right\}=\int_{0}^{P_{\min }=10^{-101 / 10}} \frac{1}{10^{-76 / 10}} \exp \left(-\frac{p}{10^{-76 / 10}}\right) d p=0.0032
$$

(d) The room in (c) has plenty of average power for communications ... the correct answer is to move just a few centimeters in any direction to get out of the small-scale fade.
(e) There are 4 waves of equal power and the total power is -76 dBm . Each wave must then carry -82 dBm or $6.3 \times 10^{-9} \mathrm{~mW}$.
(f) The point of this question: this is an electromagnetically large cavity so it will have lots of modes. I accepted any estimate in the range between 100 and $1,000,000$ modes. There are a lot of ways for crudely estimating this number (what a great engineering problem!) One example by a student: The maximum mode index number for m is 131 , for n is 82 , and for p is 49 . Thus, an upper-bound of modes for the waveguide is $131 \times 82 \times 49$ or 526,358 modes, which would be higher than the actual number. For anyone who might be interested, a short computer program will reveal that this cavity supports 273,569 resonant modes.

4. Circular vs. Rectangular Waveguide (20 points):

(a) For a given cut-off frequency f, the perimeter of the circular waveguide is:

$$
r=\frac{0.293}{f \sqrt{\mu \epsilon}} \longrightarrow \text { Perimeter }=2 \pi r=\frac{1.84}{f \sqrt{\mu \epsilon}}
$$

For a square wave with the same cut-off frequency:

$$
a=\frac{0.5}{f \sqrt{\mu \epsilon}} \longrightarrow \text { Perimeter }=4 a=\frac{2.00}{f \sqrt{\mu \epsilon}}
$$

Clearly the circular guide is cheaper.
(b) The ratio between the second and the first mode cut-offs for the circular guide is:

$$
\frac{\text { Cut-off for } \mathrm{TM}_{01}}{\text { Cut-off for } \mathrm{TE}_{11}}=1.31
$$

The ratio between the second and the first mode cut-offs for the square waveguide is:

$$
\frac{\text { Cut-off for } \mathrm{TE} / \mathrm{M}_{11}}{\text { Cut-off for } \mathrm{TE}_{10}}=1.41
$$

For the same initial cut-off frequency, the square guide should have more single-mode bandwidth.

