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I. Introduction 
 This paper presents the results of the 
examination of the signal received by two monopole 
antennas attached to the Shinkansen high speed bullet 
train as the train moves through different terrains and 
receives signals from different angles. The results 
show the effect of small-scale fading on the received 
signal and provide a justification for the design of an 
adequate power sampling system to implement 
selection diversity between the two received signals. 
 

II. System Model 
 Multipath shape factors were used to model the 
system and determine the effects of small-scale 
fading on the received signal. The principal shape 
factors: the angular spread Λ, the angular constriction 
γ, and the azimuthal direction of maximum fading 
Θmax are directly related to the average rate at which 
the signal fades [1]. The shape factors can be used to 
determine the level-crossing rate and the average fade 
duration. 
 The system will be modeled and examined in 
four operating environments consisting of two terrain 
conditions and two directional conditions. The first 
terrain type is a rural terrain in which there is 
relatively minimal multipath. The second type of 
terrain is either mountainous or a high-urban region 
where multipath effects are more considerable. As 
the train moves forward the orientation of the train 
with respect to the base station will change. To 
account for this variation the angle-of-arrival will be 
considered with the base station is directly in front of 
the train and orthogonal to the path of the train. A 
train speed of 260 kilometers per hour will be used 
when modeling the system. The four operating 
environments are summarized in Appendix 1. 

III. System Modeling – Shape Factors  
 The shape factors are functions of the complex 
Fourier coefficients 
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The Fourier coefficients were calculated for the four 
system conditions. The Matlab code used to calculate 

the coefficients is included in Appendix 2. The first 
three coefficients for each system condition is shown 
in Table 1. 
 
 F0 F1 F2 
Rural, Θ0  = 0 0.10472 0.10443 0.1036 
Rural, Θ0  = 90 0.10472 0.10443i -0.1036 
Urban, Θ0 = 0 2.2313 1.1411 0.1203 
Urban, Θ0 = 90 2.2313 1.1411i -0.1203 
Table 1. Fourier coefficients for model conditions. 
 
 Using the Fourier coefficients the angular spread 
Λ, angular constriction γ, and azimuthal direction of 
maximum fading Θmax were calculated using the 
appropriate coefficient equations. [1] The Matlab 
code used to generate these shape factors is included 
in Appendix 3. The results for each system condition 
are shown in Table 2. 
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 Λ γ Θmax  (deg) 
Rural, Θ0  = 0 0.0744 0.9682 90 
Rural, Θ0  = 90 0.0744 0.9682 0 
Urban, Θ0 = 0 0.8593 0.2812 90 
Urban, Θ0 = 90 0.8593 0.2812 0 
Table 2. Shape Factors for model conditions 
 
 The shape factors were used to determine the 
level-crossing rate in a Rayleigh fading channel using 
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The average fade duration was calculated using using  
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 Figure 1 shows the resulting level crossing rate 
for the for model conditions. The Matlab code used 
to generate this graph is included in Appendix 4. As 
expected when the threshold level is near the 
normalized threshold the small scale fading signal 
produces the maximum level crossing rate. The level 
crossing rate is higher in the urban environment 
rather than the rural environment due to an increase 
in the multipath waves being received. The level 
crossing rate was also higher when the train traveled 
inline with the base station signal rather than 

orthogonally. Traveling inline produced a greater 
relative velocity between the base station and the 
train receiver and therefore increased the frequency 
of the signal fade.  
 The average fade duration versus normalized 
threshold level is shown in Figure 1. The Matlab 
code used to generate this plots are shown in 
Appendix 5. As the threshold level is increased more 
the received signal is received below the threshold 
value and the average fade duration increases. 

 

 
Figure 1. Level Crossing Rate vs. Normalized Threshold Level  

 

 
Figure 2. Average Fade Duration vs. Normalized Threshold Level 



IV. System Modeling – Modeled Signal 
 The signal power received at each antenna on the 
train is a function of the carrier signal frequency, the 
direction of the train, the angle of arrival from the 
base station, and the received multipath signals. A 
matlab script was used to model each of the model 
conditions and calculate the signal power received by 

each antenna during a one millisecond time frame. 
Next, the threshold selection output was determined 
from the two antenna signals. Figures 3 through 6 
show the modeled reception signal and corresponding 
threshold selection output for each system condition. 
Figures 3 through 6 are also included as full page 
figures in Appendix 6. The Matlab code used to 
generate the power signals is included in Appendix 7.

 

 
Figure 3. Small Scale Fading Received Power for Model 1 

 
Figure 4. Small Scale Fading Received Power for Model 2 
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Blue – Signal 2 
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Figure 5. Small Scale Fading Received Power for Model 3 

 

 
Figure 6. Small Scale Fading Received Power for Model 4 
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IV. Conclusions 
 From inspection the simulated small scale fading 
signals indicate that the worst case reception will 
occur in the urban environment when the train is 
moving inline with the base station. Under these 
conditions the level crossing rate is the highest of the 
possible conditions and the threshold selection 
diversity output supplies the lowest signal power 
values.   
 The information obtained visually through the 
small signal graphs agrees with and confirms the 
information obtained using the shape factors. In order 

to switch input signals the selection diversity 
algorithm must sample the power from the two 
signals faster than the highest level crossing rates. 
The maximum level crossing rate from Figure 1 is 
51.7 dB which converts to 385 samples per second. 
The maximum level crossing rate is a minimum 
power sampling rate and in order to reduce delay in 
switching a power sampling rate of roughly 10 times 
the minimum value should provide for ample 
sampling speed. Therefore the recommended power 
sampling frequency is 4 kilohertz. 
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Appendix 1: System Model Parameters 
 

 

Condition 1: 
ThetaNaut =0 
 
Rural Landscape 
Theta1=3 degrees 
 

 

Condition 2: 
ThetaNaut =0 
 
Urban Landscape 
Theta1=120 degrees 

 

 
Condition 3: 
ThetaNaut =90 
 
Rural Landscape 
Theta1=3 degrees 

 

Condition 4: 
ThetaNaut =90 
 
Urban Landscape 
Theta1=120 degrees 

 



Appendix2: Calculation of the Complex Courier Coefficients 
 

% FUNCTION:  function [Fn] = FourCoeff( theta1_deg, thetaNaut_deg, n) 
% 
% Calculates the Fourier coefficient 
% 
% Author:  Brad Schafer, 3/21/2004 
% 
% Inputs: 
%  theta1_deg - angle of arrival from base station. Azimuth direction of 
%               peak arrival 
%  thetaNaut_deg - Thickness of distribution 
%  n               nth coefficient  
% 
% Outputs: 
%  Fn - value of Fourier Coefficient 
% 
% Sample Usage: 
% To calculate the n=0 fourier coefficent of a spectrum with a direction of arrival at 90 
%   degrees and a theta1 value of 120 degrees... 
% >> [Fn] = FourCoeff( 120, 90,0); 
 
 
function [Fn] = FourCoeff( theta1_deg, thetaNaut_deg, n) 
    theta1 = theta1_deg/180*pi; 
    thetaNaut = thetaNaut_deg/180*pi; 
    A = 1; 
    Fn = (2 * A * theta1 * exp(j * n * thetaNaut) ) / (n^2 * theta1^2 + 1) *  (1-(-1)^n * 
theta1 * exp(-pi/theta1)); 
return ; 
 



Appendix3: Calculation of Shape Factors 
 

% FUNCTION:  function [angS] = angSpread( Fzero, Fone) 
% 
% Calculates the Angular Spread 
% 
% Author:  Brad Schafer, 3/21/2004 
% 
% Inputs: 
%   Fzero - first fourier coefficient 
%   Fone -  second fourier coefficient 
% 
% Outputs: 
%  angS - angular spread. Should be a number between 0 and 1 
% 
% Sample Usage: 
% To calculate the angluar spread with a couple sample courier  
% >> function [angS] = angSpread( 0.1047,0.1044) 
 
 
function [angS] = angSpread( Fzero, Fone) 
    angS = sqrt(1-((abs(Fone))^2) / (Fzero^2)) 
return ; 
 



Appendix4: Calculation of Lever Crossing Rates 
 

%function [p,LCR_array] = levelCrossingRate( angSprd, angConst, maxFade, theta1, 
thetaNaut) 
 
hold on 
[p,y]=levelCrossingRate( .0744, .9682, 0, 3, 90); 
plot(p,20*log10(y),'-r') 
%plot(p,y) 
[p,y]=levelCrossingRate( .0744, .9682, 90, 3, 0); 
plot(p,20*log10(y),'-c') 
%plot(p,y) 
[p,y]=levelCrossingRate( .8593, .2812, 90, 120, 0); 
max(y) 
plot(p,20*log10(y),'-g') 
%plot(p,y) 
[p,y]=levelCrossingRate( .8593, .2812, 0, 120, 90); 
plot(p,20*log10(y),'-b') 
%plot(p,y) 
 
hold off 
 
function [p,LCR_array] = levelCrossingRate( angSprd, angConst, maxFade, theta1, 
thetaNaut) 
    v = 72.22;  %speed of train 
    maxFade_rad = maxFade/180*pi; 
%    approachAng_rad = approachAng/180*pi; 
    f = 1900e6; 
    wavelength = 3e8 / f; 
    %[output,theta] = Azimuth( theta1, thetaNaut); 
    %a1 = polar(theta,output); 
    %pTheta = output; 
    p = .02:.02:2.5; 
     
    LCR_array = zeros(1,length(p)); 
    for n = 1:length(p) 
        LCR1 = sqrt(2*pi) * v * angSprd * p(n) / wavelength; 
        LCR2 = sqrt( 1 + angConst * cos(2*(0-maxFade))); 
        LCR3 = exp( -(p(n))^2 ); 
        LCR_array(n) = LCR1 * LCR2 * LCR3; 
    end 
     
    %pLCR = plot(pTheta, LCR) 
return 
     
 



Appendix5: Calculation of Average Fade Duration 
 

function [p,FD_array] = fadeDuration( angSprd, angConst, maxFade, theta1, thetaNaut) 
    v = 72.22;  %speed of train 
    maxFade_rad = maxFade/180*pi; 
%    approachAng_rad = approachAng/180*pi; 
    f = 1900e6; 
    wavelength = 3e8 / f; 
    %[output,theta] = Azimuth( theta1, thetaNaut); 
    %a1 = polar(theta,output); 
    %pTheta = output; 
     
    p = .02:.02:2.5; 
     
    FD_array = zeros(1,length(p)); 
    for n = 1:length(p) 
        FD1 = wavelength * ( exp( (p(n))^2 ) - 1 ); 
        FD2 = sqrt(2*pi)*v*p(n)*angSprd; 
        FD3 = sqrt(1 +angConst*cos(2*(0-maxFade))); 
        FD_array(n) = FD1 / FD2 / FD3; 
    end 
 
 
%function [p,LCR_array] = levelCrossingRate( angSprd, angConst, maxFade, theta1, 
thetaNaut) 
 
hold on 
[p,y]=fadeDuration( .0744, .9682, 0, 3, 90); 
plot(p,20*log10(y),'-r') 
title('Fade Duration vs. Normalized Threshold Level') 
 
%plot(p,y) 
[p,y]=fadeDuration( .0744, .9682, 90, 3, 0); 
plot(p,20*log10(y),'-c') 
xlabel('Normalized Threshold Level') 
ylabel('Average Fade Duration [sec] dB') 
%plot(p,y) 
[p,y]=fadeDuration( .8593, .2812, 90, 120, 0); 
plot(p,20*log10(y),'-g') 
%plot(p,y) 
[p,y]=fadeDuration( .8593, .2812, 0, 120, 90); 
plot(p,20*log10(y),'-b') 
%plot(p,y) 
 
hold off 
 



Appendix 6a. Small Scale Fading Received Power for Model 1. 

 



Appendix 6b. Small Scale Fading Received Power for Model 2. 

 



Appendix 6c. Small Scale Fading Received Power for Model 3. 

 



Appendix 6d. Small Scale Fading Received Power for Model 4. 

 



Appendix7: Small Scale Fading Received Power Matlab Code 
 

% FUNCTION:  [Ez,r] = MakeWaves( L, f, thetaR, thetaNaut, theta1, N ) 
% 
% Makes sample fading plots as a function of space. 
% 
% Author:  Greg Durgin, 3/13/2004 
%           modified by Brad Schafer 4/21/04 
% 
% Inputs: 
%  L - the total distance (in meters) to plot 
%  f - carrier frequency (in Hz) 
%  thetaR - azimuth orientation of movement in space (in degrees) 
%  thetaNaut - angle of signal approach 
%  theta1 - angle associated with thickness of received beam 
 
%  N - total number of plane waves (default is 100) 
% 
% Outputs: 
%  Ez - vector of total z-component of E-field as function of space 
%  r - vector of corresponding positions (same size as Ez) 
% 
% Sample Usage: 
% To make a fading profile over 3 meters in space at a carrier frequency of 
% 2.0 GHz as observed with a 45-degree orientation in space: 
% >> [Ez,r] = MakeWaves( 3, 2.4e9, 45 ); 
% 
% Sample Usage New: 
% To make a fading profile over 3 meters in space at a carrier frequency of 
% 2.0 GHz as observed with a 45-degree orientation in space: 
% >> [Ez,r] = MakeWaves4( 3, 2.4e9, 45, 0, 120 ); 
 
% Notes: 
% The code provides a useful example of how to simulate the small-scale 
% fading that occurs when many plane waves superimpose in space.  Feel free 
% to adapt this code for your ECE3065 project.  The output of this function 
% is the z-component of electric field (in complex phasor form) as a 
% function of space.  The function automatically graphs Ez as a function of 
% r on a dB-scale graph at the end of the routine, so that you can see the 
% types of outputs required for the project. 
% 
% The function "p" at the end of this file is your azimuth spectrum of 
% multipath power.  The default spectrum is omnidirectional (so the graphs 
% will not depend on thetaR at all!) but this can be changed fairly 
% quickly. 
%Cont. 



function [Ez,r] = MakeWaves4( L, f, thetaR, thetaNaut, theta1, N ) 
 
% Set a default value of 100 for N 
if ~exist('N')   
    N = 100; 
end; 
 
% Initialize Variables 
lambda = 3e8/f;                     % wavelength 
M = 16*L/lambda;                    % good number of space samples 
k = 2*pi/lambda;                    % freespace wavenumber 
%r = linspace(0,L*(1-1/M),M);        % make an array of sequential positions 
x = linspace(0,L*(1-1/M),M);        % make an array of sequential positions 
Ez = zeros(size(x));                % initialize Ez component to zero 
Ez2 = zeros(size(x));                % initialize Ez component to zero 
theta = linspace(0,2*pi*(1-1/N),N); % vector azimuth angles 
thetaR_rad = thetaR/180*pi; 
thetaNaut_rad = thetaNaut/180*pi; 
theta1_rad = theta1/180*pi; 
 
% Step through N azimuth angles and add z-components of electric 
% field from each direction.  The expression below that is added to Ez each 
% loop is a single plane wave.  Its amplitude is related to the multipath 
% angle spectrum and its phase is random, but tapers "k" radians/meter in 
% the direction of wave travel.  By the end of this loop, Ez will be the 
% sum of N different plane waves, creating the strange 
% constructive-destructive interference pattern as a function of space. 
 
for n=theta, 
    %for first one y's are all zeros 
    Ez = Ez + (p(n,thetaNaut_rad,theta1_rad))^.5 *   exp( j*( 2*pi*rand(1) + k*x*cos(n-
thetaR_rad)                         ) ); 
    %for second attenna y is -2 
    Ez2 = Ez2 + (p(n,thetaNaut_rad,theta1_rad))^.5 * exp( j*( 2*pi*rand(1) + k*x*cos(n-
thetaR_rad) - k*2*sin(n-thetaR_rad) ) ); 
end; 
 
% Normalize Ez so that average power is 1 
Erms = (sum(abs(Ez).^2)/length(Ez))^.5;     % root-mean-square 
Ez = Ez/Erms;                               % normalize to average power 1 
 
Erms2 = (sum(abs(Ez2).^2)/length(Ez2))^.5;     % root-mean-square 
Ez2 = Ez2/Erms2;                               % normalize to average power 1 
 
% Plot a nice graph of power in dB as a function of space 
figure(1); 



highest = max(Ez,Ez2); 
plot(x,20*log10(abs(Ez)),'-b',x,20*log10(abs(Ez2)),'r-',x,20*log10(abs(highest)),'g*:');     
% plot dB-scale Ez as a function of r 
title(sprintf('Small-Scale Fading in Received Power at %1.0f MHz, 
\\theta_R=%i',f/1e6,thetaR*180/pi)); 
xlabel( 'Position (m)' ); 
ylabel( 'Normalized Received Power (dB)' ); 
 
return; % finish 
 
 
% Here is the function defining the azimuth spectrum, the distribution of 
% multipath power as a function of angle-of-arrival. 
% 
% The example below is for an omnidirectional spectrum (a constant). 
% Change it to see other types of angle spectra. 
% 
function P = p(theta_p,thetaNaut_p,theta1_p) 
    P = 1 * exp(-abs((theta_p-thetaNaut_p)/theta1_p)); 
% Here is another example, the cosine-squared spectrum 
% P = cos(theta)^2; 
return; 
 
 
 
 
 
 
 
 
 


