Hints for Shape Factors on Class Project

Due Date: 22 April 2004 (Thursday)

1 Useful Hint

Several students requested some help in calculating the shape factors for the Laplacian azimuth spectrum used in the project. Recall that the Laplacian azimuth spectrum is given by

$$
p(\theta)=A \exp \left(-\left|\frac{\theta-\theta_{0}}{\theta_{1}}\right|\right)
$$

The constant A is arbitrary (it will only change the average received power, not the shape of the distribution or the statistics of the fading.) The value θ_{0} is the azimuth direction of peak arrival and, in general, points in the direction of the base station transmitter. The value θ_{1} is related to the thickness of the distribution.

The nth Fourier coefficient of this spectrum is given by

$$
F_{n}=\frac{2 A \theta_{1} \exp \left(j n \theta_{0}\right)}{n^{2} \theta_{1}^{2}+1}\left[1-(-1)^{n} \theta_{1} \exp \left(-\frac{\pi}{\theta_{1}}\right)\right]
$$

where θ_{0} and θ_{1} are in radians. Just plug in the values for your $\theta_{1}=120^{\circ}$ and $\theta_{1}=3^{\circ}$ models and solve for angular spread (Λ), angular constriction (γ), and direction of maximum fading $\left(\theta_{\max }\right)$.

A few hints about what your results should look like:

- The angular spread should always be a number between 0 and 1 . The angular spread for the $\theta_{1}=120^{\circ}$ case will be much larger than the angular spread for the $\theta_{1}=3^{\circ}$ case.
- The angular constriction should also always be a number between 0 and 1 . The angular constriction for the $\theta_{1}=120^{\circ}$ case will be smaller than the angular constriction for the $\theta_{1}=3^{\circ}$ case.
- The direction of maximum fading for both cases should be 90° away from the peak of the azimuth distribution $\left(\theta_{0}\right)$.

