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Theory of Multipath Shape Factors for Small-Scale
Fading Wireless Channels

Gregory D. Durgin, Student Member, IEEE,and Theodore S. Rappaport, Fellow, IEEE

Abstract—This paper presents a new theory of multipath
shape factors that greatly simplifies the description of small-scale
fading statistics of a wireless receiver. A method is presented for
reducing a multipath channel with arbitrary spatial complexity
to three shape factors that have simple intuitive geometrical
interpretations. Furthermore, these shape factors are shown to
describe the statistics of received signal fluctuations in a fading
multipath channel. Analytical expressions for level-crossing rate,
average fade duration, envelope autocovariance, and coherence
distance are all derived using the new shape factor theory and
then applied to several classical examples for comparison.

Index Terms—Angle of arrival, diversity, fading channels, mo-
bile communications, multipath channels, propagation, scattering.

I. INTRODUCTION

T HE motion in space of a wireless receiver operating in a
multipath channel results in a communications link that

experiences small-scale fading. The termsmall-scale fadingde-
scribes the rapid fluctuations of received power level due to
small subwavelength changes in receiver position [1]. This ef-
fect is due to the constructive and destructive interference of
the numerous multipath waves that impinge upon a wireless
receiver [2]. The resulting signal strength fluctuations affect,
in some way, nearly every aspect of receiver design: dynamic
range, equalization, diversity, modulation scheme, and channel
and error-correction coding.

Due to its random unpredictable nature, small-scale fading is
always studied as a stochastic process. Numerous researchers
have measured and analyzed thefirst-order statistics of these
processes, which mostly involves the characterization of small-
scale fading with a probability density function (PDF) [3]–[5].
The autocorrelation statistics of fading processes orsecond-
orderstatistics have also been studied [6], [7]. Second-order sta-
tistics include measures of a process such as power spectral den-
sity (PSD), level-crossing rate, and average fade duration.

Second-order statistics are heavily dependent on the an-
gles-of-arrival of received multipath. Traditionally, most
second-order statistics have been studied using an omnidi-
rectional azimuthal propagation model [2]. That is, multipath
waves are assumed to arrive at the receiver with equal power
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from the horizon in every possible direction. Truthfully, no
realistic channel resembles this idealized model, but it does
approximate multipath propagation for receivers operating
in heavily shadowed regions with a dense concentration of
scatterers and yields analytical results which resembled early
field measurements [6]. The model has the added bonus of
producing analytical statistics that are isotropic, unrealistically
identical regardless of the direction traveled by the mobile
receiver. Unfortunately, recent measurements and models have
shown that the arriving multipath of a local area bears little
resemblance to the omnidirectional propagation assumption
[8], [9]. Moreover, even an approximately omnidirectional
channel will no longer appear as such if directional or smart
antenna systems are employed at the receiver [10], [11].

This paper augments the classical theory of small-scale
fading by introducing the new concept ofmultipath shape fac-
tors,which allow the quantitative analysis ofanydistribution of
nonomnidirectional multipath waves in a local area (where the
signal strength is assumed to be wide-sense stationary). Three
principle shape factors—the angular spread, the angular con-
striction, and the azimuthal direction of maximum fading—are
defined and exactly related to the average rate at which a
received signal fades [12]. Four of the basic second-order
small-scale fading statistics—level-crossing rate, average
fade duration, autocovariance, and coherence distance—are
then derived using the multipath shape factor theory. To
demonstrate the accuracy and simplicity of the theory, several
classical propagation problems are analyzed using multipath
shape factors. This paper provides a principle contribution by
presenting a fundamental, intuitive and quantitative description
of how nonomnidirectional multipath affects the second-order
statistics of small-scale fading.

II. M ULTIPATH SHAPE FACTORS

This section presents the three multipath shape factors that
influence second-order fading statistics. The shape factors are
derived from the angular distribution of multipath power, ,
which is a general representation of from-the-horizon propaga-
tion in a local area [7]. This representation of includes an-
tenna gains and polarization mismatch effects [13]. Shape fac-
tors are based on the complex Fourier coefficients of

(1)

where is the th complex Fourier coefficient. The utility of
these three shape factors is made apparent in Section III.
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A. Angular Spread

The shape factorangular spread is a measure of how multi-
path concentrates about a single azimuthal direction. We define
angular spread to be

(2)

where and are defined by (1). There are several advan-
tages to defining angular spread in this manner. First, since an-
gular spread is normalized by (the total amount of local av-
erage received power), it is invariant under changes in trans-
mitted power. Second, is invariant under any series of rota-
tional or reflective transformations of . Finally, this defini-
tion is intuitive; angular spread ranges from zero to one, with
zero denoting the extreme case of a single multipath component
from a single direction and one denoting no clear bias in the an-
gular distribution of received power.

It should be noted that other definitions exist in the literature
for angular spread. These definitions involve either beamwidth
or the RMS calculations and are often ill suited for general
application to periodic functions such as [14]–[17].

B. Angular Constriction

The shape factorangular constriction is a measure of how
multipath concentrates abouttwo azimuthal directions. We de-
fine angular constriction to be

(3)

where , , and are defined by (1). Much like the defi-
nition of angular spread, the measure for angular constriction
is invariant under changes in transmitted power or any series
of rotational or reflective transformations of . The possible
values of angular constriction range from zero to one, with
zero denoting no clear bias in two arrival directions and one de-
noting the extreme case of exactly two multipath components
arriving from different directions.

C. Azimuthal Direction of Maximum Fading

A third shape factor, which may be thought of as an orien-
tation parameter, is theazimuthal direction of maximum fading

. We define this parameter to be

(4)

The physical meaning of the parameter is presented in the next
section.

III. RATE VARIANCE RELATIONSHIPS

Complex received voltage, received power, and received
envelope are the three basic stochastic processes that are
studied in a small-scale fading analysis. In order to understand
how these stochastic processes evolve over space, it is useful
to study the position derivatives or rate-of-changes of the three
processes. Since the mean derivative of a stationary process is
zero, the mean-squared derivative is the simplest statistic that
measures the fading rate of a channel. In fact, a mean-squared

derivative of a stationary process is actually thevarianceof
the rate-of-change. This section, therefore, presents equations
for describing the rate variance relationships of small-scale
received complex voltage, power, and envelope fluctuations.
All of these relationships are proven exactly in Appendix I.

A. Complex Received Voltage

The complex received voltage is a base-band represen-
tation of the summation of numerous multipath waves that have
impinged upon the receiver antenna and have excited a complex
voltage component at the input of a receiver [1]. Appendix I-A
derives the rate variance for the complex voltage of a re-
ceiver traveling along the azimuthal direction

(5)

where is the wavelength of the carrier frequency, is the
mean-squared received power (units ofvolts squared), and is
the centroid of the complex voltage power spectrum (removes
any nonzero linear phase taper). Note that the dependence on
multipath angle-of-arrival in (5) may be reduced entirely to the
three basic shape factors: angular spread, angular constriction,
and the azimuthal direction of maximum fading. The physical
significance of is that it describes the spatial selectivity of a
channel in a local area and, by extension, the average complex
voltage fluctuations for a mobile receiver.

B. Received Power

Received power is equal to the magnitude-squared of
complex voltage . Note that this definition of power yields
units ofvolts squaredrather thanwatts,which would differ only
by a constant of proportionality related to the input impedance
of the receiver; thevolts-squareddefinition is more general and
independent of the receiver used.

The mathematical operation of taking the squared magnitude
of a complex quantity is a nonlinear operation, so in order to
derive a rate variance relationship for received power, we will
assume that the channel isRayleigh fading. This assumption,
however, is unnecessary for the derivation of (5). Appendix I-B
derives the rate variance for the power of a receiver traveling
along the azimuthal direction

(6)

Once again, the dependence on multipath angle-of-arrival in (6)
may be reduced entirely to the three basic shape factors. The
physical significance of is that it describes the average re-
ceived power fluctuations in a Rayleigh fading local area.

C. Received Envelope

Received envelope is equal to the magnitude of com-
plex voltage . Once again, we will assume that the channel



684 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 5, MAY 2000

is Rayleigh fadingto calculate the mean-squared fading rate.
Appendix I-C shows how this assumption leads to the envelope
rate variance

(7)

Again, (7) depends on, , and . The physical significance
of is that it describes the average envelope fluctuations in a
Rayleigh fading local area.

D. Comparison to Omnidirectional Propagation

Applying the three shape factors, , and to the clas-
sical omnidirectional propagation model, we find that there is
not a bias in either one or two directions of angle-of-arrival,
leading to maximum angular spread ( ) and minimum
angular constriction ( ). The statistics of omnidirectional
propagation areisotropic,exhibiting no dependence on the az-
imuthal direction of receiver travel.

If the rate variance relationships of (5)–(7) are normalized
against their values for omnidirectional propagation, then they
reduce to the following form:

(8)

where is a normalized fading rate variance. Equation (8) pro-
vides a convenient way to analyze the effects of the shape factors
on the second-order statistics of small-scale fading.

First, notice that angular spread describes theaverage
fading rate within a local area. A convenient way of viewing
this effect is to consider the fading rate variance taken along
two perpendicular directions within the same local area. From
(8), the average of the two fading rate variances, regardless of
the orientation of the measurement, is always given by

(9)

Equation (9) clearly shows that the average fading rate within a
local area decreases with respect to omnidirectional propagation
as multipath power becomes more and more concentrated about
a single azimuthal direction. A method for measuring multipath
angular spread based on this relationship has been presented in
[18].

Second, notice that angular constrictiondoes not affect the
average fading rate within a local area, but describes the vari-
ability of fading rates taken along different azimuthal directions
. From (8), fading rate variance will change as a function

of direction of receiver travel, but will always fall within the
following range:

(10)

The upper limit of (10) corresponds to a receiver traveling in
the azimuthal direction of maximum fading ( ) while
the lower limit corresponds to travel in a perpendicular direc-
tion ( ). Equation (10) clearly shows that the
variability of fading rates within the same local area increases
as the channel becomes more and more constricted.

It is interesting to note that the propagation mechanisms of
a channel are not uniquely described by the three shape factors

, , and . An infinitum of propagation mechanisms exist
which may have the same set of shape factors and, by extension,
lead to channels which exhibit nearly the same end-to-end per-
formance. In fact, (8) provides rigorous mathematical criteria
for a multipath channel that may be treated as “pseudo-omnidi-
rectional”

(11)

Under the condition of (11), angular spread becomes approx-
imately one and angular constriction becomes approximately
zero. Thus, the second-order statistics of the channel behave
nearly identical to the classical omnidirectional channel.

IV. EXAMPLES OF FADING BEHAVIOR

This section presents four different analytical examples of
nonomnidirectional propagation channels that provide insight
into the shape factor definitions and how they describe fading
rates.

A. Two-Wave Channel Model

Consider the simplest small-scale fading situation where two
coherent, constant-amplitude multipath components, with indi-
vidual powers defined by and , arrive at a mobile receiver
separated by an azimuthal angle. Fig. 1 illustrates this angular
distribution of power, which is mathematically defined as

(12)

where is an arbitrary offset angle and is an impulse func-
tion. By applying (2)–(4), the expressions for, , and for
this distribution are

(13)

The angular constriction is always one because the two-wave
model represents perfect clustering about two directions. The
limiting case of two multipath components arriving from the
same direction ( ) results in an angular spreadof zero.
An angular spread of one results only when two multipath of
identical powers ( ) are separated by . Fig. 1
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Fig. 1. Fading properties of two multipath components of equal power.

shows how the fading behavior changes as multipath separa-
tion angle increases for the case of two equal-powered waves.
Thus, increasing changes a channel with low spatial selec-
tivity into a channel with high spatial selectivity that exhibits a
strong dependence on the azimuthal direction of receiver mo-
tion.

B. Sector Channel Model

Consider another theoretical situation where multipath power
is arriving continuously and uniformly over a range of azimuth
angles. This model has been used to describe propagation for
directional receiver antennas with a distinct azimuthal beam [7].
The function will be defined by

elsewhere.
(14)

The angle indicates the width of the sector (in radians) of ar-
riving multipath power and the angle is an arbitrary offset

angle, as illustrated by Fig. 2. By applying (2)–(4), the expres-
sions for , , and for this distribution are

(15)

The limiting cases of these parameters and (6) provide deeper
understanding of angular spread and constriction.

Fig. 2 graphs the spatial channel parameterand as a func-
tion of sector width . The limiting case of a single multipath ar-
riving from precisely one direction corresponds to , which
results in the minimum angular spread of . The other lim-
iting case of uniform illumination in all directions corresponds
to (omnidirectional Clarke model), which results in
the maximum angular spread of . The angular constric-
tion follows an opposite trend. It is at a maximum ( )
when and at a minimum ( ) when . The
graph in Fig. 2 shows that as the multipath angles of arrival are
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Fig. 2. Fading properties of a continuous sector of multipath components.

condensed into a smaller and smaller sector, the directional de-
pendence of fading rates within the same local area increases.
Overall, however, fading rates decrease with decreasing sector
size .

C. Double Sector Channel Model

Another example of angular constriction may be studied
using the double sector model of Fig. 3. Diffuse multipath
propagation over two equal and opposite sectors of azimuthal
angles characterize the incoming power. The equation that
describes this angular distribution of power is

elsewhere.
(16)

The angle is the sector width and the angle is an arbitrary
offset angle. By applying (2)–(4), the expressions for, , and

for this distribution are

(17)

Note that the value of angular spreadis always one. Regard-
less of the value of , an equal amount of power arrives from
opposite directions, producing no clear bias in the direction of
multipath arrival.

The limiting case of (omnidirectional propagation)
results in an angular constriction of . As decreases,
the angular distribution of power becomes more and more con-
stricted. In the limit of , the value of angular constric-
tion reaches its maximum . This case corresponds to
the above-mentioned instance of two-wave propagation. Fig. 3
shows how the fading behavior changes as sector widthin-
creases, making the fading rate more and more isotropic while
the RMS average remains constant.

D. Rician Channel Model

A Rician channel model results from the addition of a single
plane wave and numerous diffusely scattered waves [3]. If the
power of the scattered waves is assumed to be evenly distributed
in azimuth, then the channel may be modeled by the following

:

(18)



DURGIN AND RAPPAORT: THEORY OF MULTIPATH SHAPE FACTORS FOR SMALL-SCALE FADING WIRELESS CHANNELS 687

Fig. 3. Fading properties of double-sectored multipath components.

where is the ratio of coherent to diffuse incoherent power,
often referred to as the Rician -factor. By applying (2)–(4),
the expressions for , , and for this distribution are

(19)

Fig. 4 depicts the spatial channel parametersand as a
function of -factor. For very small -factors, the channel ap-
pears to be omnidirectional ( and ). As the -factor
increases, the angular spread of the Rician channel decreases
and the angular constriction increases. This indicates that the
overall fading rate in the Rician channel decreases and that the
differences between the minimum and maximum fading rate
variances within the same local area but different directions in-
creases.

V. SECOND-ORDERSTATISTICS USING SHAPE FACTORS

With an understanding of how shape factors describe fading
rate variances, it is possible to redrive many of the basic second-
order statistical measures of fading channels in terms of the
three shape factors. Level-crossing rates, average fade duration,
spatial autocovariance, and coherence distance expressions that
were originally derived under the assumption of omnidirectional
multipath propagation will now be cast in terms of the angular

spread, the angular constriction, and the azimuthal direction of
maximum fading [12], [19], [20].

The derivations focus on Rayleigh channels since these types
of channels are analytically tractable. A Rayleigh fading signal
is one whose envelope follows a Rayleigh PDF given
by

(20)

where is the average total power received in a local area
(units ofvolts squared).

A. Level-Crossing Rates and Average Fade Duration

The general expression for a level-crossing rate is given by
the following [2]:

(21)

where is the threshold level and is the joint PDF of
envelope and its time derivative. For a Rayleigh-fading signal,
the level-crossing rate of the envelope process is

(22)
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Fig. 4. Fading properties of Rician-model multipath components.

The variable is the normalized threshold level such that
[2]. Note that is simply the time-derivative equiva-

lent of derived in Appendix I-A, which arises from a mobile
receiver traveling through space with a constant velocity in an
otherwise static channel (transmitter and scatterers are fixed).

By substituting (5) into (22), we arrive at an exact expression
for the level-crossing rate in a Rayleigh fading channel with
any arbitrary spatial distribution of multipath power and any
direction of mobile receiver travel

(23)

The average fade durationis defined to be [2], [6]

(24)

Substitution of the Rayleigh PDF of (20) and (23) into (24)
yields

(25)

Equations (23) and (25) are useful tools for studying small-scale
fading statistics in the presence of nonomnidirectional multi-
path.

B. Spatial Autocovariance

Another important second-order statistic is the spatial autoco-
variance of received voltage envelope. The autocovariance func-
tion determines the correlation of received voltage envelope as a
function of change in receiver position and is useful for studies
in spatial diversity [2], [21]. Appendix II develops an approxi-
mate expression for the spatial autocovariance function of enve-
lope based on shape factors [19]. The approximation reads

(26)

Equation (26) allows us to estimate the envelope correlation be-
tween two points in space separated by a distancealong an az-
imuthal direction . The behavior of (26) is benchmarked in Sec-
tion V-D against several known analytical solutions presented in
[2].
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C. Coherence Distance

Coherence distance is the separation distance in space
over which a fading channel appears to be unchanged. Coher-
ence distance is important in the design of wireless receivers
that employ spatial diversity to combat spatial selectivity. For
mobile receivers, a similar parameter calledcoherence time
is the elapsed time over which a fading channel appears to be
constant. For the case of a static channel, the coherence time
of a mobile receiver may be calculated from the coherence dis-
tance ( , where is the speed of the mobile).

Definitions for coherence distance may be based on the en-
velope autocovariance function. A convenient definition for the
coherence distance is the value that satisfies the equation

[22]. The classical value for coherence distance in
an omnidirectional Rayleigh channel is given by

(27)

where is the wavelength of radiation. Using the generalized
autocovariance function of (26) leads to a new definition of co-
herence distance

(28)

For omnidirectional propagation, (28) differs from (27) by only
3.0%. Furthermore, (28) captures the behavior of nonomnidi-

rectional propagation. As angular spreaddecreases, the co-
herence distance in a local area increases. As the angular con-
striction increases, the coherence distance develops a strong
dependence on orientation.

D. Revisiting Classical Channel Models

As a point of comparison, this section analyzes three well-
known cases of propagation that have analytical solutions [2].
The cases are analyzed using the shape factor approach as out-
lined above for mobile receivers with speed. This approach is
shown to produce quick, comprehensive, and, most importantly,
accurate solutions.

The first case corresponds to a narrowband receiver oper-
ating in a local area with multipath arriving from all directions
such that the angular distribution of power is a constant.
The receiver antenna is assumed to be an omnidirectional whip,
oriented perpendicular to the ground. Due to the vertical elec-
tric-field polarization of the whip antenna, this propagation sce-
nario is referred to as the case [6].

The second two cases correspond to the same narrowband re-
ceiver in the same omnidirectional multipath channel, but with a
small loop antenna mounted atop the receiver such that the plane
of the loop is perpendicular to the ground. The antenna pattern
of the small loop antenna attenuates the arriving multipath such
that the angular distribution of power becomes

(29)

where is some arbitrary gain constant. Unlike the omnidirec-
tional case, the statistics of this propagation scenario will
depend on the direction of travel by the receiver. Thecase

Fig. 5. Three different multipath-induced mobile-fading scenarios.

will refer to a receiver traveling in a direction perpendicular to
the main lobes of the loop antenna pattern ( ). The
case will refer to a receiver traveling in a direction parallel to
the main lobes ( ). Fig. 5 illustrates the , , and
cases for the modeled receiver antennas.

The first step is to calculate the three spatial parameters from
the angular distribution of power using (2)–(4). The spatial
parameters for the case are , , and .
Since this case is omnidirectional, the angular spread is at a max-
imum ( ) and the angular constriction is at a minimum
( ). For the and cases, the spatial parameters are

, , and . Since the impinging mul-
tipath have no clear bias inonedirection, the angular spread is
at a maximum just like the case. However, there is clearly
a bias intwo directions, resulting in an increased angular con-
striction of .

After substitution of these parameters into (23) along with the
appropriate direction of mobile travel, the level-crossing rates
for the three cases become

(30)

(31)

(32)

The corresponding average fade durations are

(33)

(34)

(35)

These expressions exactly match the original solutions pre-
sented by Clarke in [6].

Now substitute the channel shape factors into the approximate
spatial autocovariance functions in (26). The results for the three
cases are

(36)

(37)

(38)
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Fig. 6. Comparison between Clarke theoretical and approximate envelope
autocovariance functions forE case.

Fig. 7. Comparison between Clarke theoretical and approximate envelope
autocovariance functions forH case.

These three functions are compared to their more rigorous ana-
lytical solutions in Figs. 6–8. Note that all three model the spa-
tial autocovariance function consistent with the approximation
made in the derivation of (26). The behavior is nearly exact for
values of equal to or less than a correlation distance.

E. Additional Comments

The shape factor technique for finding fading statistics is an
intuitive way to relate the physical channel characteristics to the
fading behavior. In the previous examples, the spatial parame-
ters may be calculated analytically or even estimated intuitively
by simply looking at the distributions of multipath power in
Fig. 5. The use of spatial parameters to find level crossing rate,
average fade duration, and spatial autocovariance is quite simple
when compared to the full analytical solutions of the, ,

Fig. 8. Comparison between Clarke theoretical and approximate envelope
autocovariance functions forH case.

and cases presented in [2]. The proposed solution is also
more comprehensive. For example, once the shape factors have
been found, (23), (25), and (26) provide statistics forall direc-
tions of travel for the and cases and not just specific
directions such as or . Thus, specific fading be-
haviors for various directions of receiver motion are modeled
easily.

The solution form of (23), (25), and (26) reveals an interesting
property about statistics in Rayleigh-fading channels. Since the
three shape factors only depend on low-order Fourier coeffi-
cients, many of the second-order statistics of Rayleigh-fading
channels are insensitive to the higher order multipath structure.
The general biases of angular spread and angular constriction
truly dominate the space and time evolution of these fading pro-
cesses.

VI. CONCLUSION

Multipath shape factor theory provides an easy, intuitive, and
accurate method for analyzing small-scale fading channels with
nonomnidirectional multipath propagation. The theory also has
many implications for the measurement of wireless channels.
For example, fading along specific directions may be measured
in a local area with a simple noncoherent receiver to calculate
various multipath angle-of-arrival characteristics. Conversely,
angle-of-arrival characteristics may be measured with a direc-
tional antenna to calculate local area fading behavior.

The principle drawback of applying the theory to mobile re-
ceivers is the requirement of an otherwise static channel. If the
fading induced by transient scatterers in the channel becomes
large compared to the mobile-induced fading, then the theory
may only be used to describe the spatial selectivity of a local
area at a particular instant in time. Further work may also be
required to extend the shape factor theory to situations where
three-dimensional propagation becomes important rather than
the classical two-dimensional (on-the-horizon) models that are
typically used for terrestrial microwave propagation.
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APPENDIX I

This appendix derives the three rate variance relationships
presented in this paper.

A. Rate Variance for Complex Voltage

The power spectral density (PSD) of a base-band complex
received voltage signal is related to the angular distribution of
multipath power [7]

for (39)

where is the azimuthal direction of travel and is the an-
gular distribution of impinging multipath power. The value
is the maximum wavenumber, which is equal to . Note that
the PSD is a function of wavenumberinstead of frequency
since multipath angles-of-arrival directly relate tospatialselec-
tivity. By extension, the PSD is identical to thedoppler spec-
trum of a mobile receiver if the receiver moves in a static
channel.

The second moment of the fading process is given by the
following integration [2]:

(40)

where is the centroid of the PSD

(41)

is defined by (1)—this really just the average power of the
process.

Now insert (41) into (40), making the change of variable
, where the and signs correspond

to the left and right terms of , respectively, of (39). After
rearranging the limits of integration, the equation for be-
comes

(42)

Consider a complex Fourier expansion of with respect to

Real

Real (43)

All of the are zero for odd . This is because
; that is, a 180 change in the direction of mobile

travel should produce identical statistics. Furthermore, (42) has

no harmonic content with respect tofor . Solving for
the only two remaining complex coefficients produces

(44)

(45)

where , , and are the three basic spatial channel param-
eters defined in (2)–(4). If these two coefficients are placed back
into (43), the end result is the relationship for in (5).

For a mobile receiver, it is often convenient to measure the
fading rate variance in terms of change per unit time instead of
distance. If the mobile receiver operates in an otherwise static
channel, then the mean-squared time rate-of-changeis equal

to multiplied by the squared velocity of the receiver.

B. Rate Variance for Power

The stochastic process of power is defined as
. Thus, the PSD of power for

is the convolution of two complex voltage PSD’s:
, provided the com-

plex voltage is a Gaussian process (the condition for
Rayleigh fading) [23]. The rate variance relationship for power
may then be written as

(46)

(47)

Making the substitution leads to

(48)

which may be regrouped and re-expressed in terms of the spec-
tral centroid

(49)
Now simply substitute (5) for to obtain (6).

C. Rate Variance for Envelope

Based on the power relationship , it is possible
to write the following:

(50)
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which is valid for a Rayleigh fading process sinceand its
derivative are independent [3]. Setting the left-hand side of (50)
equal to the rate variance relationship for power in (6) pro-
duces the mean-squared fading rate result for a Rayleigh-fading
voltage envelope in (7).

APPENDIX II

APPROXIMATESPATIAL AUTOCOVARIANCE FUNCTION

This appendix derives the approximate spatial autocovariance
function for small-scale Rayleigh fading signals.

The spatial autocovariance function for received envelope is
defined as follows [2], [24]:

(51)

where is a position in the plane of the horizon (arbitrary if the
fading process is considered to be wide-sense stationary) and

is a unit vector pointing in the direction of receiver travel.
To develop an approximate expression for the autocovariance of
multipath fields, first expand the function into a Mclaurin
series

(52)

Equation (52) contains only even powers ofsince any real au-
tocovariance function is an even function. The differentiation of
an autocovariance function satisfies the following relationship
[23]:

(53)

and is useful for re-expressing the Mclaurin series

(54)

Now consider approximated by an arbitrary Gaussian
function and its Mclaurin expansion

(55)

A Gaussian function is chosen as a generic approximation to the
true autocovariance since it is a convenient and well-behaved
correlation function. The appropriate constantis chosen by
setting equal the second terms of (54) and (55), ensuring that
the behavior of both autocovariance functions is identical for
small

(56)

Therefore, the approximate spatial autocovariance depends only
on the three multipath shape factors, as shown in (26).

REFERENCES

[1] T. S. Rappaport,Wireless Communications: Principles and Prac-
tice. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[2] W. C. Jakes, Ed.,Microwave Mobile Communications. New York:
IEEE Press, 1974.

[3] S. O. Rice, “Statistical properties of a sine wave plus random noise,”
Bell Syst. Tech. J., vol. 27, no. 1, pp. 109–157, Jan. 1948.

[4] H. Suzuki, “A statistical model for urban radio propagation,”IEEE
Trans. Commun., vol. 25, pp. 673–680, July 1977.

[5] A. J. Coulson, A. G. Williamson, and R. G. Vaughan, “A statistical basis
for log-normal shadowing effects in multipath fading channels,”IEEE
Trans. Commun., vol. 46, pp. 494–502, Apr. 1998.

[6] R. H. Clarke, “A statistical theory of mobile-radio reception,”Bell Syst.
Tech. J., vol. 47, pp. 957–1000, 1968.

[7] M. J. Gans, “A power-spectral theory of propagation in the mobile radio
environment,”IEEE Trans. Veh. Technol., vol. VT-21, pp. 27–38, Feb.
1972.

[8] J.-P. Rossi, J.-P. Barbot, and A. J. Levy, “Theory and measurement of the
angle of arrival and time delay of UHF radiowaves using a ring array,”
IEEE Trans. Antennas Propagat., vol. 45, pp. 876–884, May 1997.

[9] J. Fuhl, J.-P. Rossi, and E. Bonek, “High-resolution 3-D direction-of-
arrival determination for urban mobile radio,”IEEE Trans. Antennas
Propagat., vol. 45, pp. 672–682, Apr. 1997.

[10] J. H. Winters, “Smart antennas for wireless systems,”IEEE Personal
Commun., vol. 1, pp. 23–27, Feb. 1998.

[11] J. C. Liberti and T. S. Rappaport,Smart Antennas for Wireless CDMA
Communications. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[12] G. D. Durgin and T. S. Rappaport, “Three parameters for relating
small-scale temporal fading to multipath angles-of-arrival,” in
PIMRC’99, Osaka, Japan, Sept. 1999, pp. 1077–1081.

[13] , “A basic relationship between multipath angular spread and
narrow-band fading in a wireless channel,”Inst. Elect. Eng. Electron.
Lett., vol. 34, pp. 2431–2432, Dec. 1998.

[14] Y. Ebine, T. Takahashi, and Y. Yamada, “A study of vertical space diver-
sity for a land mobile radio,”Electron. Commun. Jpn., vol. 74, no. 10,
pp. 68–76, 1991.

[15] A. F. Naguib and A. Paulraj, “Performance of wireless CDMA with
M -ary orthogonal modulation and cell site arrays,”IEEE J. Selected
Areas Commun., vol. 14, pp. 1770–1783, Dec. 1996.

[16] T. Fulghum and K. Molnar, “The Jakes fading model incorporating an-
gular spread for a disk of scatterers,” in48th IEEE Veh. Technol. Conf.,
Ottawa, Canada, May 1998, pp. 489–493.

[17] S.-S. Jeng, G. Xu, H.-P. Lin, and W. J. Vogel, “Experimental studies of
spatial signature variation at 900 MHz for smart antenna systems,”IEEE
Trans. Antennas Propagat., vol. 46, pp. 953–962, July 1998.

[18] N. Patwari, G. D. Durgin, T. S. Rappaport, and R. J. Boyle, “Peer-to-peer
low antenna outdoor radio wave propagation at 1.8 GHz,” in49th IEEE
Veh. Technol. Conf., vol. 1, Houston, TX, May 1999, pp. 371–375.

[19] G. D. Durgin and T. S. Rappaport, “Effects of multipath angular spread
on the spatial cross-correlation of received voltage envelopes,” in
49th IEEE Veh. Technol. Conf., vol. 2, Houston, TX, May 1999, pp.
996–1000.

[20] , “Level crossing rates and average fade duration of wireless
channels with spatially complicated multipath,” inGlobecom’99,
Brazil, Dec. 1999.

[21] R. G. Vaughan and N. L. Scott, “Closely spaced monopoles for mobile
communications,”Radio Sci., vol. 28, no. 6, pp. 1259–1266, Nov. Dec.
1993.



DURGIN AND RAPPAORT: THEORY OF MULTIPATH SHAPE FACTORS FOR SMALL-SCALE FADING WIRELESS CHANNELS 693

[22] R. Steele,Mobile Radio Communications. Piscataway, NJ: IEEE
Press, 1994.

[23] A. Papoulis,Probability, Random Variables, and Stochastic Processes,
3rd ed. New York: McGraw-Hill, 1991.

[24] A. M. D. Turkmani, A. A. Arowojolu, P. A. Jefford, and C. J. Kellett, “An
experimental evaluation of the performance of two-branch space and po-
larization diversity schemes at 1800 MHz,”IEEE Trans. Veh. Technol.,
vol. 44, pp. 318–326, May 1995.

Gregory D. Durgin (S’99) was born in Baltimore,
MD, on October 23, 1974. He received the B.S.E.E.
and M.S.E.E. degrees from Virginia Polytechnic In-
stitute and State University, Blacksburg, VA, in 1996
and 1998, respectively. He is currently working to-
ward the Ph.D. degree at the Mobile and Posrable
Radio Research Group (MPRG) at the same univer-
sity as a Bradley Fellow.

Since 1996, he has been a Research Assistant at
MPRG, where his research focuses on radio wave
propagation, channel measurement, and applied

electromagnetics. He has published (as a student) 14 technical papers in
international journals and conferences. He serves regularly as a consultant to
industry.

Mr. Durgin received the 1998 Blackwell Award for best graduate research
presentation in the Electrical and Computer Engineering Department, Virginia
Polytechnic Institute and State University. He also received the 1999 Stephen
O. Rice Prize as a coauthor with T. S. Rappaport and H. Xu for the best original
research paper published in the IEEE TRANSACTIONS ONCOMMUNICATIONS.

Theodore S. Rappaport (S’83 –M’87 –SM’91–
F’98) received the B.S.E.E., M.S.E.E., and Ph.D. de-
grees from Purdue University, West Lafayette, IN, in
1982, 1984, and 1987, respectively.

Since 1988, he has been on the Virginia Poly-
technic Institute and State University electrical
and computer engineering faculty, where he is the
James S. Tucker Professor and Founding Director
of the Mobile and Portable Radio Research Group
(MPRG), a university research and teaching center
dedicated to the wireless communications field. In

1989 he founded TSR Technologies, Inc., a cellular radio/PCS manufacturing
firm, which he sold in 1993. He is Chairman of Wireless Valley Communica-
tions, Inc., has consulted for over 20 multinational corporations, and has served
the International Telecommunications Union as a consultant for emerging
nations. He holds three patents and has authored, coauthored, and coedited 14
books in the wireless field, includingWireless Communications: Principles
and Practice(Englewood Cliffs, NJ: Prentice-Hall, 1996),Smart Antennas for
Wireless Communications: IS-95 and Third Generation CDMA Applications
(Englewood Cliffs, NJ: Prentice-Hall, 1999), and several compendia of papers
including “Cellular Radio and Personal Communications: Selected Readings”
(IEEE Press, 1995, “Cellular Radio and Personal Communications: Advanced
Selected Readings” (IEEE Press, 1996), and “Smart Antennas: Selected
Readings (IEEE Press, 1998). He has coauthored more than 130 technical
journal and conference papers. He serves on the editorial board ofInternational
Journal of Wireless Information Networks.

Dr. Rappaport received the Marconi Young Scientist Award in 1990 and an
NSF Presidential Faculty Fellowship in 1992. He was the recipient of the 1998
IEEE Communications Society Stephen O. Rice Prize Paper Award. He is ac-
tive in the IEEE Communications and Vehicular Technology societies. He is a
registered professional engineer in Virginia and is a past member of the Board
of Directors of the Radio Club of America.


