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The geometrical theory of diffraction is an extension of geo-
metrical optics which’ accounts for diffraction. It introduces
diffracted rays in addition to the usual rays of geometrical optics,
These rays are produced by incident rays which hit edges, corners,
or vertices of boundary surfaces, or which graze such surfaces,
Various laws of diffraction, analogous to the laws of reflection and
refraction, are employed to characterize the diffracted rays. A
modified form of Fermat’s principle, equivalent to these laws, can
also be used. Diffracted wave fronts are defined, which can be
found by a Huygens wavelet construction. There is an associated
phase or eikonal function which satisfies the eikonal equation. In
addition complex or imaginary rays are introduced. A feld is
associated with each ray and the total field at a point is the sum
of the fields on all rays through the point. The phase of the field
on a ray is proportional to the optical length of the ray from some

reference point. The amplitude varies in accordance with the
principle of conservation of energy in a narrow tube of rays, The
initial value of the field on a diffracted ray is determined from 1}
incident field with the aid of an appropriate diffraction coefficien;
These diffraction coefficients are determined from certain canonicy;
problems. They all vanish as the wavelength tends to zero. Ti
theory is applied to difiraction by an aperture in a thin scree,
diffraction by a disk, etc., to illustrate it. Agreement is shown |
tween the predictions of the theory and various other theoreticy
analyses of some of these problems. Experimental confirmation ,;
the theory is also presented. The mathematical justification of (g
theory on the basis of electromagnetic theory is described. Finally,
the applicability of this theory, or a modification of it, to othe
branches of physics is explained.

1. INTRODUCTION

EOMETRICAL optics, the oldest and most widely
used theory of light propagation, fails to account

for certain optical phenomena called diffraction. We
shall describe an extension of geometrical optics which
does account for these phenomena. It is called the geo-

these wave fronts and which satisfies the usual eikonal
equation. Thus all the fundamental principles of ords
nary geometrical optics can be extended to the geo-
metrical theory of diffraction.

Ordinary geometrical optics is often used to determine
the distribution of light intensity, . polarization, and
phase throughout space. This is accomplished by assign.
ing a field value to each ray and letting the total field
at a point be the sum of the fields on all the ray:
through that point. The phase of the field on a ray is
assumed to be proportional to the optical length of the
ray from some reference point where the phase is zero.
The amplitude is assumed to vary in accordance with
the principle of conservation of energy in a narrow tube
of rays. The direction of the field, when it is a vector, i-
given by a unit vector perpendicular to the ray. This
vector slides parallel to itself along the ray in a homo-
geneous medium, and rotates around the ray in a specific
way as it slides along it in an inhomogeneous medium.

Exactly the same principles as those just described
can be used to assign a field to cach diffracted ray. The
only difficulty occurs in obtaining the initial value of the
field at the point of diffraction. In the case of the
ordinary rays, the field on a ray emerging from a source
is specified at the source. But on a reflected or trans-
mitted ray, the initial value is obtained by multiplying
the field on the incident ray by a reflection or trans

mission coefficient. By analogy the initial value of the
field on a diffracted ray is obtained by multiplying the
field on the incident ray by a diffraction coefficient.
which is a matrix for a vector field, There are different
coefficients for edge diffraction, vertex diffraction, etc.

All the diffraction coefficients vanish as the wave-
length X of the field tends to zero. Then the sum of the
fields on all diffracted rays, which we call the diffracted
field, also vanishes. The geometrical optics field alone
remains in this case, as we should expect because diffrac-
tion is usually attributed to the fact that X is not zero.
116

it assumes that light travels along certain straight or
curved lines called rays. But it introduces various new
ones, called diffracted rays, in addition to the usual rays.
Some of them enter the shadow regions and account for
the light there while others go into the illuminated
regions.

Diffracted rays are produced by incident rays which
hit edges, comers, or vertices of boundary surfaces, or
which graze such surfaces. Ordinary geometrical optics
does not describe what happens in these cases but the
new theory does. It does so by means of several laws of
diffraction which are analogous to the laws of reflection
and refraction. Like them, the new laws are deducible
from Fermat’s principle, appropriately modified. Away
from the diffracting surfaces, diffracted rays behave
just like ordinary rays.

In terms of the new rays, diffracted wave fronts can
be defined. A Huygens wavelet construction can also be
devised to determine them. It is also possible to intro-
duce an eikonal or phase function which is constant on

* This paper was presented as an invited address at the Seminar
on Recent Developments in Optics and Related Fields at the
October 13, 1960 meeting of the Optical Society of America,
Boston, Massachusetts. The research on which it is based was
sponsored in part by the Air Force Cambridge Research Labora-
tories, Office of Aerospace Research.

1]. B. Keller, “The geometrical theory of diffraction,” Proceed-
ings of the Symposium on Microwave Optics, Eaton Electronics
Research Laboratory, McGill University, Montreal, Canada
(June, 1953).

2 See J. B. Keller, in Calctdus of Variations and its Ap plications,
Proceedings of Symposia in A pplied M ath, edited by L. M. Graves
(McGraw-Hill Book Company, Inc., New York and American
Mathematical Society, Providence, Rhode Island, 1958), Vol. 8,
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Dimensional considerations show that edge-diffraction
cacfficients are proportional to A* and tip- or vertex-

< &firaction coefficients to A. The field diffracted around
e 3 curved surface decreases exponentially with A, and is
- amsequently weaker than the field diffracted by a tip

which is in turn weaker than that diffracted by an edge.
" Diffraction coeflicients can be characterized by recog-
sizing that only the immediate neighborhood of the

~ point of diffraction can affect their values. Thus the
- directions of incidence and diffraction, the wavelength,

andthe geometrical and physical properties of the media
at the point of diffraction determine them. This suggests
that they are determined by certain simpler problems in
which only the local geometrical and physical properties
eater. These “canonical” problems must be solved in
seder to determine the diffraction coefficients mathe-
matically. Alternatively, experimental measurements on
these canonical configurations can yield the coefficients.

The theory outlined above suffices for the analysis of
1 large class of situations involving diffraction. How-

" ever, there remain phenomena which can be analyzed

saly by the inclusion of still another type of ray—the

- complex or imaginary ray. In a homogeneous medium
~ wehanayisa complex straight line, while in an inhomo-
§  poeous medium it is a complex-valued solution of the
. differential equations for rays. Such rays occur as trans-

=itted rays whenever total internal reflection occurs,
124 also in many other situations. Fields can be associ-
sted with these rays just as well as with the other
Ends of rays,

A different kind of diffraction effect, not covered by
the theory as explained so far, occurs at a caustic or
fxus of the ordinary or the diffracted rays. At such
$haces neighboring rays intersect and the cross-sectional
area of a tube of rays becomes zero. Consequently the
#mciple of energy conservation in a tube of rays leads
*an infinite amplitude for the field there. In order to
oblain a finite value for the field at such places the
et theory introduces a caustic correction factor.
Wben the field on a ray passing through a caustic is
=ultiplied by the appropriate factor, it becomes finite
3 the caustic. The caustic correction factors are deter-
®2ed by the wavelength and the local-ray geometry
®ar the caustic, and are obtained from canonical

- mblems,

ln the subsequent sections this theory will be ex-

; Pamed more fully and applied to some typical illustra-
- =% examples. Other applications of the theory will also

- described. The mathematical interpretation of the

| 3 oy in terms of asymptotic expansions will be ex-

in order to relate it to electromagnetic theory.
Construction of similar theories in other branches
Physics will also be commented upon.

. 2. EDGE-DIFFRACTED RAYS

kaunddmental premise underlying the geometrical
*¥ of diffraction is that light propagation is entirely
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a local phenomenon because the wavelength of light is
so small. By this it is meant that the manner of propaga-
tion at a given point is determined solely by the prop-
erties of the medium and the structure of the field in an
arbitrarily small neighborhood of the point. Further-
more all fields, no matter how they are produced, must
have the same local structure, namely, that of a plane
wave. Therefore, all fields must propagate in the same
way. In particular, then, diffracted fields must travel
along rays just like the ordinary geometrical optics field
does, and, in fact, these rays must obey the ordinary
geometrical-optics laws. The rays along which the
diffracted field propagates are the diffracted rays.

Where do diffracted rays come from? It seems clear
that they must be produced by some of the ordinary
optical rays, but, which ones? The laws of propagation;,
reflection, and refraction enable us to follow the usual
rays from the source outward, and determine where
they go and what rays they produce, with some excep-
tions. The usual laws fail to specify what happens to a
ray which hits an edge or a vertex, or grazes a boundary
surface. Therefore, such rays must give rise to diffracted
rays. We hypothesize that they do. In the case of edges,
this hypothesis is related to Thomas Young’s idea that
diffraction is an edge effect.

This hypothesis can be tested mathematically in those
cases where diffraction problems have been solved by
other means. One such case is the difiraction of a plane
wave by a semi-infinite screen with a straight edge. The
solution of this problem obtained by Sommerfeld® con-
sists of incident and reflected plane waves plus a third
wave which is called a diffracted wave. When the inci-
dent wave is propagating in a direction normal to the
edge of the screen, the diffracted wave is cylindrical with
the edge as its axis. The straight lines orthogonal to the
cylindrical wave fronts of the diffracted wave appear to
come from the edge and can be identified with our
diffracted rays. This example also suggests that an inci-
dent ray normal to the edge produces diffracted rays
which are also normal to the edge and which leave it in
all directions.

When the incident rays in the direction of propagation
of the incident wave are oblique to the edge of the
screen, the diffracted wave in Sommerfeld’s solution is
conical. This means that the diffracted wave fronts are
parallel cones with the edge as their common axis. The
straight lines orthogonal to these cones also appear to
come from the edge, and can be identified with our
diffracted rays. This example suggests the law of edge
diffraction. A diffracted ray and the corresponding inci-
dent ray make equal angles with the edge at the point
of diffraction, provided that they are both in the same
medium. They lie on opposite sides of the plane normal
to the edge at the point of diffraction. When the two
rays lie in different media, the ratio of the sines of the

3 A.J. W. Sommerfeld, Optics (Academic Press, Inc., New York,-
1954).
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Fi6. 1. (2) The cone of diffracted rays produced by an incident
ray which hits the edge of a thin screen obliquely. (b) The plane
of diffracted rays produced by a ray normally incident on the
edge of a thin screen.

angles between the incident and diffracted rays and the
normal plane is the reciprocal of the ratio of the indices
of refraction of the two media. See Fig. 1.(°**"~,

The second part of this law, pertaining to diffraction
into a different medium, is not suggested by the above
example but is suggested by Snell’s law of refraction.
Both parts of the law are consequences of the following
modified form of Fermat’s principle which we call
Fermat's principle for edge diffraction. An edge-difiracted
ray from a point P to a point Q is a curve which has
stationary optical length among all curves from 2 to Q
with one point on the edge.

The derivation of the law of edge diffraction from this
principle is particularly simple when the edge is straight
and both rays lic in the same homogeneous medium.
Then it is obvious that the ray consists of two straight-
line segments meeting at a point on the edge. Let us
rotate the plane containing the edge and the point @
around the edge until it contains P. In doing so the
length of the segment from () to the axis is unchanged,
and the angle between the segment and the axis is un-
changed. After the rotation, 2, Q, and the edge lie in one
plane and the stationary optical path is that given by
the law of reflection. Thus the two segments must make
equal angles with the edge and lie on opposite sides of
the plane normal to the edge at the point of diffraction
—but this is the law of edge diffraction for rays in the
same medium. A similar argument, using Snell’s law,
yields the law of edge diffraction for rays in different
media.

The law of edge diffraction is also confirmed by several
approximate solutions of the problem of diffraction by
an aperture in a thin screen. The Kirchhoff method,
sometimes called the method of physical optics, repre-
sents the field diffracted through an aperture as an
integral over the aperture. Rubinowicz! evaluated this

* A. Rubinowicz, Ann. Physik 53, 257 (1917); 73, 339 (1924).
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integral asymptotically for short wavelengths when the
incident field was a spherical wave, by using the Maggi
transformation. He showed that the diffracted field at a
point Q consisted of contributions from a small numbe
of points on the edge. If we draw straight lines from
these points to Q and call them diffracted rays we find
that all of them at smooth parts of the edge satisfy the
law of edge diffraction. The integrals of the Kirchhof
and modified Kirchhoff method, which employs Ray-
leigh’s formulas, have been evaluated asymptotically for
short wavelengths by van Kampen® and by Keller ef ol
for arbitrary incident fields. The latter authors als
evaluated Braunbek’s” improved version of the Kirch-
hoff integrals. In all cases the points on smooth parts of
the edge which contribute to the diffracted field corre-
spond to diffracted rays satisfying the law of edge
diffraction.

An indirect experimental verification of the existence
of edge diffracted rays and of the law of edge diffraction
Is contained in the results of Coulson and Becknell*
They photographed the cross sections of the shadows of
thin opaque disks of various shapes and detected bright
lines in the shadows. When the incident field was
normally incident on a disk, the bright line was found
to be the evolute of the edge of the disk. In the special
case of a circle the evolute is just the center, which
appears as the well-known bright spot on the axis of the
shadow. According to the law of edge diffraction, the
diffracted rays lic in planes normal to the edge when the
incident rays are normal to the edge. Therefore the
caustic of these rays is a cylinder normal to the disk.
Its cross section is the envelope of the normals to the
edge in the plane of the disk, which is just the evolute
of the edge. Thus the cross section of the caustic of the
diffracted rays coincides with the bright lines which
were observed. A similar interpretation applies to the
bright lines observed at oblique incidence. Similar bright
lines were observed by Nienhuis® in the diffraction pat-
terns of apertures. He found that they were exactly
the caustics of diffracted rays which he assumed 10
emanate normally from the edge.

3. FIELDS DIFFRACTED BY STRAIGHT EDGES

Let us now consider the field #, on a ray diffracted
from an edge.* For simplicity let us suppose that the ray
is in a homogencous medium so that it is a straight line.
Let us begin with the two-dimensional case in which
the edge is a straight line and the incident rays all lie
in planes normal to the edge. Then the diffracted rays
are also normal to the edge, and emanate from it in all

*N. G. van Kampen, Physica 14, 575 (1949),

#J. B. Keller, R. M. Lewis, and B. D. Seckler, J. Appl. Phy=
28, 570 (1957).

" W. Braunbek, Z. Physik 127, 381 (1950); 127, 405 (1950).

®]. Coulson and G. G. Becknell, Phys. Rev. 20, 594 (1922);
20, 607 (1922).

? K. Nienhuis, Thesis, Groningen, 1948,

1 J. B. Keller, J. Appl. Phys. 28, 426 (1957).
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V‘ﬁudiﬂﬂﬁ- Thus it suffices to consider only the rays in
"# plane normal to the edge. o
If A denotes the wavelength of the 1nc1fient field #;,
% i & convenient to define the propagation constant
& §=2e/). We also denote by 7 the dlstancp from the
Then the phase on a diffracted ray is just &7 plus
¥ the phase ¥ of the incident ray at the edge. To find the
.« smplitude A(r), which we assume to be a scalar, we
- consider as a tube of rays two neighboring rays in the
§ ' ame plane normal to the edge. Actually the tube is a
: cylinder of unit height. The cross-sectional area of this
" jube is proportional to r and the flux through it is
‘ proportional to 74 Since the flux must be constant,
Alr) is proportional to 7. The amplitude is also pro-
ional to the incident amplitude A, at the edge so we
write A (r)=DA 7}, where D is a diffraction coefficient.
Thus the diffracted field is

wte= DA rtgitkrHvo = Dy reikr, (1)

Let us compare our result (1) with Sommerfeld’s®
. exact solution for diffraction of a plane scalar wave by
i ahali-plane. When his result is asymptotically expanded
. for large values of kr, it agrees perfectly with (1) pro-

M‘hat E_’y"._’ d,"‘«( st i 5
: eivit i
——————{secj(f—a)xcsci(0+a) ] (2)
2(2xk)} sin8

Hn@{?s the angle between the incident ray and the
edge which is(r/2 iin this case. The angles between the
mcident and di}ﬁ'hct'ed rays and the normal to the screen
are § and e, respectively (see Fig. 2). The upper sign
applies when the boundary condition on the half-plane
v #=0 while the lower sign applies if it is du/dn=0.

The agreement between (1) and the exact solution
tafirms our theory and also determines the edge diffrac-
tion coefficient D). Similar agreement occurs for oblique
meidence on a half-plane when (1) is replaced by the
3ppropriate expression and the denominator sing is in-
<iuded in (2). In this case 6 and « are defined as above
after first projecting the rays into the plane normal to
te edge. In case the half-plane is replaced by a
sedge of angle- (2—n)r, comparison .of (1); and its
modified form for Bw/2, with Sommerfeld’s exact
“tion for a wedge yields agreement when

I
f A

Diffrocted

Incident Roy
. Ray

8

Fuc. 2. The projection of inci-
x diffracted rays into a a
222 normal to the edge of a --
;:n. The angles « and 8 are
between the projections
%2d the normal to the screen,
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F1c. 3. The diffracted rays produced by a plane wave normally
incident on a slit in a thin screen. The two incident rays which hit
the slit edges are shown, with some of the singly difiracted rays
they produce. One diffracted ray from each edge is shown crossing
the slit and hitting the opposite edge, producing doubly diffracted .
rays.

e WALt

e’ sin— | 2

toon T G\l &7 3l ‘
D= l:(C()S ‘_COS--) e,
nQuk)isingl\  n o«

T O+a+m\"!
-:F(cos——cos- ) :I (3

i [

For n=2"the wedge becomes a half-plane and (3) re-
duces to (2). [Equation (3) is misprinted in Eq. (A10)
of reference 10.] In the electromagnetic case D is a
matrix which has been determined in reference 10 for
a perfectly conducting thin screen.

We shall now apply (1) and (2) to determine the field
diffracted through an infinitely long slit of width 2a in a
thin screen. By Babinet’s principle, this will also be the
field diffracted by a thin strip of width 2a. For simplicity
we shall assume that the incident field 15 a plane wave
propagating in a direction normal to the edges of the slit.
Then the problem is two dimensional and we can confine
our attention to a plane normal to the edges. In this
plane let the screen lie in the v axis of a rectangular co-
ordinate system with the edges of the slit at =0,
y==a. Let the incident field be et (= cose—y sina) Ty
singly diffracted rays, one from each edge, pass through
any point P. Thus the singly diffracted field at P, #..(P),
is the sum of two terms of the form (1).

8ik{r1—a sina)+1iw/4

#et(P)= ——————T[sect (6,Fa)==csci (h:—a) ]
2(2mkry)?

et’k(rﬁ-a. sina)+in/4

p(_“ 2)7 +[ .ec"Z'(Bﬂ ) . -'3 ( 2 (!) -
2 _:1ka 5 o d:( S( B ...{
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F16. 4. The far-field diffraction pattern of a slit of width 2 hit
normally by a plane wave; ka=8. The solid curve based upon
“q. (6) results from single diffraction, and applies to a screen on
which %=0 or du/3n=0. The dashed curve includes the effects of
multiple diffraction for a screen on which #=0. The dots are based
upon the exact solution of the reduced wave equation for a screen
on which #=0. The ordinate is #| J(@)| and the abscissa is ¢
in radians.

In (4) 71 and 7, denote the distances from P to the upper
and lower edges, and the angles 8, and 6. are determined
by the corresponding rays, as shown in Fig. 3.

The diffraction pattern of the slit, f+(¢), can be ob-
tained from (4) by introducing the polar coordinates
7,0 of P. When P is far from the slit (7>>a) we have
fi~r—asing, ry~r+asing, §,~r+ @, and fo~r— o,
Then (4) becomes

ua(P)= — (k/2ar)igirrizif, (o). ©)

The diffraction pattern f,(¢) due to single diffraction
is found to be

sin[ka(sing+sina)]  cos[ka(sin ©+sina) ]
fl)mimme T ey —
ksing(¢+a)
This equation shows that Jfa(?’)l[ 1s not zero for any
value of ¢ and that it is the same for the two types of
boundary conditions on the screen.(ji=¢ (v /dr =/

In Figs. 4and 3, |kf,()| is shown as a function of o
for normal incidence (a=0). The range of ¢ is 0 to /2
which is the region behind the slit. In Fig. 4 for which
ka=38, the exact values of the diffraction pattern are
shown. They are based upon numerical evaluation of the
exact solution of the reduced wave equation with %=0
on the screen, and are given by Karp and Russek.! The
agreement between our theory and the exact values is
seen to be quite good even though the slit is only about
3 wavelengths wide.

The transmission cross section ¢ of the slit per unit
length can be obtained simply by employing the cross-
section theorem. According to this theorem it is equal
to the imaginary part of the diffraction pattern in the
forward direction = —a. By applying the theorem to
fo(e) we obtain o= 2a cose, which is just the geometrical

6
kcosi{g—a) (©)

- optics result.

15, N. Karp and A. Russek, J. Appl. Phys. 27, 886 (1956).
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To obtain a better value of ¢, let us consider the two
doubly diffracted rays which go in the direction p=—q
They are produced by two singly diffracted rays whi,
cross the slit and hit the opposite edges. The field at the
upper edge on the singly diffracted ray from the lower
edge is given by the second term in (4) with f2=1/2 anq
rs=2a. If we choose the upper sign, appropriate tg 4
screen on which #=0, we obtain

pika(2tsina)tin/d 177
o= ——— ——— sec-(~-—a). (7:

2(wka)? 2\2

We now use (7) as the incident field in (1) to obtain the
field on the doubly diffracted rays. We proceed similarly
to find the doubly diffracted field from the lower edge
and add the two results to obtain the doubly diffracted
field .. Far from the slit we can write it in the form (3,
with fu(e) instead of f,(¢). In the direction o=—q
fa has the value .

fu(—a)=~-

1 eiﬂka(]-l—sina)-f—ir:‘-i
k(rka)%[

1+sina
ei?.’w(l¥.~'inaj +iwf/4
+mnf__}(&
1—sina

To obtain o we apply the cross-section theorem which
requires taking the imaginary part of f,(—«)+ fa(—al.
The result is

1 rcos[2ka(1+sine)—x/4]
c=2a cosq—-—— —[———-—- B —
k(mka)t 1-+sine
cos[ 2ka(1—sina)— /4]
et
1—sina
12—
0=
8-
slegtdl -
o
&
2
= e IR T T T | T T 1
] .20 .40 60 80 Lo0 1.20 140 160

é

Fi16. 5. The far-field diffraction pattern of a skit of width 2¢ hit
normally by a plane wave; ka=10x. The curve, based on Eq. (6}
results from single diffraction for a screen on which =0 or
du/dn=0. The ordinate is | f.(¢)| and the abscissa is ¢ it
radians. The value at =0 is finite but too high to be shown.
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] Thls cxpression has also been obtained by H. Levine by
. 3 difiersnt method. For normal incidence, «=0, and
£ (9) becomes

] sttt

g e e (10)
2a wi(ka)i

" InFig 6 ¢/2a s shown as a function of ka based on (10),
- and points obtained from the exact solution of the
1 boundary-value problem are also shown. The agreement

- isquite good even when the wavelength is several times
- the slit width. When additional multiply diffracted rays
* are taken into account, even better agreement is ob-
& tazined, as the dashed curve in the figure shows. The
L expression for the field obtained by summing all the
multiply diffracted fields coincides with that obtained
by Karp and Russek™ in a different way.

The above calculation of the doubly diffracted field
was performed for a screen on which #=0. For a screen
- e which d#/9n=0 no diffracted field is produced when
& plane wave travels toward the edge in a direction
& parallel to the screen. As a consequence the diffraction
£ coefficient D, given by (2) with the lower sign, vanishes

- whena=x/2. In this case the diffracted field is propor-
' tional to du;/dn, the normal derivative of the incident
. iedd at the edge. Thus (1) must be replaced by

6ui
tte=D'——y=leitr, (11)
on

Here D' s a new diffraction coefficient which can be

sblained by solving the problem of diffraction of the
- mave xe"“v by a half-plane lying on the negative ¥ axis.

This was done by Karp and Keller? with the result

{,—i"r/-i

——— = 7y

2(2r) 4k} sin'g T 6
L‘OS"(———-)

Let us use (11) and (12) to determine the doubly

Racted field for a screen on which d2/9n=0. First we
®ain from the second term in (4) at o=m/2, r,=2q
B¢ result

T o«
SITNY ==
au"[ Eiku{2+ sina)+ix/4 4 2

——— Y g

an 8(wka®)} T o«
cosﬂ(*— —)
4 2

'E_now use (13) and (12) in (11) to obtain the doubly
feld from the upper edge, and do a similar

7 %X, Kamp and 1. B. Keller, Optica Acta (Paris) 8, 61 (1961).
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F1c. 6. The transmission cross section of a slit of width 2¢ as a
function of ka, for normal incidence with =0 on the screen. The
solid curve, hased on Eq. (10), results from single and double
diffraction; the dashed curve includes single and all multiple
diffraction. The dots are based upon the exact solution of the
reduced wave equation with #=0 on the screen. The ordinate
is o/2a and the abscissa is kg,

calculation for the lower edge. Then we add the two
doubly diffracted fields to obrain

T« A
i . i Sin D Sln .
pika(+sina)+ikry 4 " 1 2

Upp=————— e

167 (ka)} (2kr,)k (w a) (11- 91)’
cos’| ——— | cos?l ———

T o« T Oy
) o
eika(2—<ina)+ikre 4 2 + 2

16m (ka)? (2kr,)} T cr. T Gy ‘
(fOSE(‘-+—> cosf(——- —)
4 2 1+ 2

Far from the slit we write #,. in the form (3) and
obtain fa(e). Then we apply the cross-section theorem
to fo(—a)+ fa(—e) and find

2a

=120 Cos—-—— —
3274 (ka)i

T o
sin‘z(- ‘-)
. ]

X9 = ————sin[2ka(1+sina)—=/4]
T
cos4(—— )
& 4+ 2
™
sin'—’(—-{- )
4 2
+— —sin[ 2ka(1—sina)—x/4]}. (15)

(24
cos“(f*{---)
12

For normal incidence a=0 and (13) becomes

(16)

L e e
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F16. 7. The transmission cross section of a slit of width 2aasa
function of ka, for normal incidence with du/dn=0 on the screen.
The curve, based on Eq. (16), results from single and double
diffraction. The dots are based upon the exact solution of the re-
duced wave equation.”® The ordinate is o/2a and the abscissa is ka.

A graph of ¢/2a versus ke based on (16) is shown in
Fig. 7 together with some values of «/2a computed by
Skavlem® from the exact solution of the boundary
value problem.

Let us now consider a diffraction grating consisting of
2N+1 parallel slits each of width 2a with centers a
distance & apart. Let us again consider the two-dimen-
sional case in which a plane wave is incident at angle o
with its wavefronts parallel to the edges. Then one singly
diffracted ray from each edge will pass through every
point and the total field is the sum of 2(2N41) terms
of the form (1). Let us number the slits from {= —Nto
t=N with the center of slit ¢ at y=1b and let 7,,¢; be
polar coordinates with their origin at this center. We
now add together the fields on the two rays from the
edges of slit ¢. If 7,>a we obtain the result (5) for that
slit, with 7,,¢, instead of r,¢ and multiplied by the
factor ¢t sina 14 account for the phase of the incident
wave. Thus far from the grating we have

=N B oA
o= — Z <_,) gik(re-th sina)+£rf4fa (cp) (1 7)

To simplify (17), let r,¢ be polar coordinates with
their origin at the center of the middle slit. At points
far from the grating compared to its length 2Vb42¢ we
have gi~p and rp~r—1ib sing and (17) becomes

By t=N
Sl — ( ) gikrtizli f () S e-iktb(sing+sina)
277 t=—N

R
N (__) gikr+inlif ()

2xr

sin[ (N+3)kb(sine+sina) ]
X 18)
sin[ 3k (sing+sina) ]

The same result applies with & instead of N3 if there
are 2N slits and the origin is at the midpoint of the
grating. The result expresses the diffraction pattern as

#C. J. Bouwkamp, Repts. Progr. in Phys, 17, 35 (1954).
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the product of the pattern of a single slit and £ grating
factor which is the quotient of sines. e

The method of this section has been appliedo diffrac.
tion by a semi-infinite thick screen with a flat end and by
a truncated wedge by Burke and Keller.* In computiny
the doubly diffracted field for a screen upon which =
it was found that D=0. This is related to the fact thy
the singly diffracted field vanishes at the edge. Her
again the doubly diffracted field is proportional 1
du;/0n at the edge. The corresponding diffraction ¢.
efficient D'(6,n) was found by solving a canonical prof
lem, as was done to obtain (12). If D(,8,n) denotes the
coefficient in (3), the result is

2e=/4 sin (x /)

n2k (2r)}

(/]

S —_— .

]

In the case of grazing incidence additional considers.
tions which we shall not explain are required because
the incident ray and a diffracted ray both continue along
the surface together.

19
D'(6,n)=——D(~x/2, 6, n)=
ik da

4. FIELDS DIFFRACTED BY CURVED EDGES

The field on an edge-diffracted ray is given by (I §
only in the special case when the diffracted wave i
cylindrical. In general (1) must be replaced by

s

te=Du[r(14p;7r) Tleitr. (20

Here p; denotes the distance from the edge to the caustic
of the diffracted rays, measured negatively in the direc-
tion of propagation. (See Fig. 8.) We obtain (20) by
employing the energy principle according to which
varies inversely as the square root of the cross-sectiona!
area of a tube of rays. If p; and p; denote the radii o
curvature of the wave front which is orthogonal to the
tube at one cross section, then p1+7 and potr ar
the corresponding radii a distance r further along
the tube. (See Fig. 9.) Thus the cross-sectional ares
is proportional to (p;+7) (p247) and A4 is propor
tional to [(p1+7)(pa+7)]-%. When p2=0, A varies &
[r(14+pi~'r) 1% Since the diffracted rays form a caustic
at the edge, po=0 there. If 7 denotes distance along 3
ray from the edge, the last expression for 4 applies. By
using it together with the phase factor and the factors
Du; previously explained, we obtain (20).

The distance p; in (20) can be found by geometrical
considerations. When the edge is a plane curve, it is

Eam

*]J. E. Burke and J. B. Keller, Research Rept. EDL-E4,
Electronic Defense Laboratories, Sylvania Electronic Systems,
Mountain View, California (March, 1960).
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- by the following formula, which is analogous to
-ns and mirror laws

’ cosd

——— 3 (21)
sinf  p sin?8

* Here p= 0 denotes the radius of curvature of the edge,
- pisthe angle between the incident ray and the (positive)
_ tangent to the edge, B is the derivative of 8 with Tespect
. toarclength s along the edge, and § is the angle between
" the diffracted ray and the normal to the edge. Since
“both § and 8/ds change sign when the direction of in-
+. creasing arclength is reversed, this direction can be
"~ chosen arbitrarily without effecting the value of p,. The
* normal, which lies in the plane of the edge, is assumed
* o point towards its center of curvature.

" As an application of (21) let us consider a spherical
= wave diffracted by a straight edge. In this case p= ®
50 the focal length of the edge is infinite and the last
& term in (21) vanishes. A simple calculation shows that
. f=—R""sinf at a point on the edge a distance R from
= the source. Thus (21) yields p;=R as we should have
L expected. If u,=¢i*2/R then (20) vields

ik (REr)+inle
258 R FRO+R)]
X [sec (—a)tcscd (6+a)].

(22)

*.  cesult coincides with the asympotic expansion of
the diffracted field given by the exact solution of the
reduced wave equation for this problem, providing
. another confirmation of our theory.

- When a plane wave is normally incident upon a screen
__tontaining an aperture of any shape, 8=1/2 for every
- nay and (21) yields py= —p/coss. 1f B=/2 it follows
~ fom the definitions of 6 and & that d=6§—7/2 so
& m=—p/sinf. For a circular aperture of radius g, p=a
. and ;= —qa/sing. In'this case two singly diffracted rays

2,
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fole)=k1(2ra/sinp)} i

e I

F1c. 9. A tube of rays and two small portions of wave fronts
normal to them a distance 7 apart. The neighboring rays intersect
at the two centers of curvature of the wave fronts. They are at the
distances p; and p» from one wave front and at p;+r and pyt+r
from the other. The ratio of the areas of the wavefront sections
is seen to be pips/ (p1+7) (pat-r).

pass through each point P not on the axis. They come
from the nearest and farthest points on the edge. If the
incident field is %,=e®** and the screen is in the plane

#=0, we obtain by adding two terms of the form (20)
the result

gikr‘-l—il','-l 81 Bl
U (P)=—-~ —[sec—:l: csc—:l
20e8L 27 2
X [ri(1—a'r, sing,) T+

eiicr:H'i'rH 92 32
—— -,:sec—_.-‘:csc—}
2(2xk)} 2 2

X[ra(1—a7'rysing;) 1% (23)

The angles and distances in (23) are as shown in Fig. 3.

Far from the aperture (23) simplifies to . |
ERE T By { L’Q-}F\f!’”i’?r
ketkr vplkah
ta=———f.(¢p). C ()
2wy

e

The diffraction pattern f,(¢) due to single diffraction
Is from (23)

sin[ka sine— (r/4)]
sin(¢/2)
;"kaffhiﬂ’f_/i@]_ 235)

cos(¢/2)

A graph of [£f,(¢)| based on (25) is given in Fig. 10
for ka= 3. It shows that f,(¢) is infinite at =0, which
Is a consequence of the fact that the axis, 2 caustic of the
diffracted rays, and the shadow boundary r=g both
extend in the direction ¢=0.

Let us examine (23) near the axis by introducing p
and x, the distances from P to the axis and to the plane
of the screen, and §=1tan~!(z/a). When p<<a, (23) can
be simplified to

a§eik(: sind+a cosd) 8 5
U= — e — ’:sec(-- +—):I:csc(—+-)]
(2rkp) (x> +a?)} 2 4 2 4

™
Xcos(kp cos&—;). (26)
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F1c. 10. The diffraction pattern of a circular hole of radius ¢ hit
normally by a plane wave; ka=3z. The solid curve, based on
Eq. (25) results from single diffraction with either =0 or
9u/3n=0 on the screen. The dashed curve, for the case n=0 on
-the screen, also includes multiple diffraction. The dotted curve
near =0 includes the caustic and shadow-boundary corrections
given by (30).

This équation shows that u, is singular like g~} on the
axial caustic p=0. To modify it so that u,, is finite there,
we consider the following exact solution of the reduced
wave equation, in which 8 is a constant and J; is the
zero-order Bessel function

2etk=z siné

€= 2ind J (ko c088) mm e _ cos(kp cosg~—r/4). (27)
(2rkp cosg)

The right side of (27) is the asymptotic expansion of the
solution on the left side when kp is large. It shows that
the solution corresponds to rays converging on an axial
caustic, making the angle 7/2—6 with the axis, just as
is the case in (26). Near the axis the right side of (27)
is not applicable and the same is trye of (26). Therefore
We assume that the right side of (26) can be converted
1o its correct value on and near the axis by multiplying
it by the ratio of the left side of (27) to the right side,
and we call this ratio the axial caustic correction factor

F=3(2xkp coss)? sec (kp cosd—m/4) T y(kp coss).  (28)
[The factor § was omitted in (A16) of reference 107.

When we multiply the right side of (26) by F, we obtain
on and near the axis

(¢ coss)t 5 7 6
=)
224+ \2 4 2 4

XJo(kp cosd) exp[[ik (x*+a)¥]. (29)

Ug)= —
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Far from the screen § approaches /2 a4
Sec[(6/2)+(1r,/’4)]=2x/ 4, 50 a1 does not decrease iy,
* along the axis. This is because the shadow boundap,
7=a extends in the direction parallel to the boundar:
When we combine #,; with the geometrical optics fiel|
#y=¢"** in the region r< a, the plane wave terms canc]
and we obtain a spherical wave

' a tka®\ 2x
Uy T2t ze""——-e"”(l +~---)——-Jo(ka sing)
¥ 2/ a
keikz

=———iraJo(ka sing). (3,
2rx

Thus f,(¢) has the finite value wwaTo(ka sing) near
=0, rather than the singular value given by (23). The
transmission cross section g is the Imaginary part of S,
according to the cross-section theorem, so (30) yields
o=ma* the geometrical optics value.

The result (30) applies only in the immediate vicinity
of =0 since its derivation employed the geometrical
optics field in the region r<a. To obtain an improved
form of the diffraction pattern (23) which is valid for
a larger range of ¢, we shall introduce a caustic and
shadow boundary correction directly into (25). We do
this by observing that (sing)~* sin (ke sing—=/4) and
(sing)~ cos(ka sing—m/4) are proportional to the
asymptotic forms of J,(ka sing) and Jy(ka sing), re-
spectively. Upon using these functions in (25) in place
of their asymprotic forms, we obtain

mari/y(ka sing)  Jy(ka Sillgo)] Gt
: 31

fﬂ(¢)=---—[——__———,—--i
kL sin(e/2) cos{e2)

Let us now consider the doubly diffracted field in
order to obtain a more accurate value of ¢. For a screen
on which #=0 the first term in (23) becomes at 7, =24,
O=x/2

cﬂika-f‘ir“l

M= — ————

: (32
(27ka)} .

This is the field on a ray which has crossed the aperture
to the opposite edge. By treating it as the incident field
n (20) we obtain for the doubly diffracted field

pikir+2a) &
Her=-————[7,(1—gy, coséy) - see—
2rkat
eik(rz+2ﬂ) "
R [ra(1—a—17, cosby) 4 sec—,  (33)
2rkat

Near the axis we find by comparing (33) with (26) that

b 6 T 6 m\T!
Ugy= —— —— se(:-—[ sec(—+—~) +csc(~+~)] ).
(2mka)t 2 2 4 2 4
(34)
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7rom (34) we see that u.» becomes infinite on the axis
¢ ta does and it can be made regular by the same
L caustic correction. The result can be obtained by using

i {29) in (34). In this way we obtain at points far behind
& the screen and near the axis

E\E

2rx

| The bracketed quan{ity in (33) is fa(e), the diffraction-
- 'pattern contribution from double diffraction. Upon
applying the cross-section theorem to it, and adding the

result to wa?, which was obtained from (30), we find

o 2 sin[ 2ka—m/4]

T (36)
wi(ka)?

Ta?

This result, which was also obtained in a different way
by Levine,® is shown in Fig. 11. Values of o/7a? obtained
from the exact solution of the corresponding boundary
value problem for the reduced wave equation are also
shown. The agreement can be seen to be quite good,
‘even when the wavelength is twice the diameter.

. For an aperture in a screen on which du/dn=0 we
must use (11) with a factor (1+p;') on the right side,
1o find the doubly diffracted field. We begin by obtaining
from the first term in (23) at r;,=2a, 6>=n/2 the result

auel eziku—iﬂ-i

= (37)
on 4(2wkd®)}

This is the normal derivative of the singly diffracted
field on a ray which has crossed the aperture to the
opposite edge. We now use (37) in (11) with the extra

S T 5 ' 7 s ¥ e 0
ks
hG: 11. The transmission cross section ¢ of a circular aperture
nadius 6 in 2 thin screen on which #=0. The wave is normally
t. Thcg solid curve, based on Eq. (36), results from single
snd double diffraction; the dashed curve also includes all multiple
Giffractions. The dots and the broken curve up to ke=35 are based
¥pon the exact solution of the reduced wave equation.® The
te is o/xa* and the abscissa ka.

.K' Levine, Institute of Mathematical Sciences, New York
versity, New York, Research Rept. EM-84 (1953).
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keitz 2 Ta 1 .
S -[——(—~) eikaizlt (ke simp)]. (35)

DIFFRACTION

1.0,

o
Taf

-1

o 1 2 3« s & 1 8 =8 o
ko

F16. 12. The transmission cross section ¢ for normal incidence
on a circular hole in 2 screen on which dx/dn=0. The ordinate is
8/wa® and the abscissa is ke. The solid curve is based upon Eq. (40)
which results from single and double difiraction. The encircled
points and the dashed curve are the exact values computed by
Bouwkamp.’?

factor to obtain the doubly diffracted field which is

1gik(rit2a) sin(8,/2)
Uer=— —[r,(1—a~r, cosdy) J———.
167 (Ba®)* cos*(81/2)
1gik(ret2a) sin(84/2)
—~————[r2(l—a s cosda) T+ —. {38)
167 (ka®)? c0s%(6./2)

Proceeding as before, we evaluate (38) at points near
the axis, then apply the caustic correction factor (28),
and finally evaluate the result far from the screen. In
this way we obtain

ke”"l"vr*] o(ka sing)
2rzl 4kl

Ugo=

D...":’i:a+i1rl4]‘ (39)

To compute ¢ we apply the cross-section theorem
which requires us to take the imaginary part of the
bracketed expression in (39) at ¢=0. We must add this
contribution to ¢ from double diffraction to wa?, ob-
tained from (30). We also add the term —=/4ke* which
was shown by Buchal and Keller'® to come from the
second term in the singly diffracted field %q. In this
way we obtain

o 1 Jsin(2k0+1r/4)
4(ka)9T dri(ka)t

(40)

Ta?

This result was also obtained by Levine and Wu.!" It is
shown in Fig. 12 together with values based upon the
exact solution of the reduced wave equation with
du/dn=0 on the screen. The agreement appears to be
quite good for ka=2.

De Vore and Kouyoumjian!® have used the method of
this section to calculate the singly and doubly diffracted
fields produced by a plane electromagnetic wave inci-

16 R. N. Buchal and J. B. Keller, Commun. Pure Appl. Math.
8, 85 (1960).

T H. Levine and T. T. Wu, Tech. Rept. 71, Applied Mathe-
matics and Statistics Laboratory, Stanford University, Stanford,
California, (July, 1957).

18 R, DeVore and R. Kouyoumjian, “The back scattering from
a circular disk,” URSI-IRE Spring meeting, Washington D. C.
(May, 1961).
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Fic. 13. Experimental and theoretical values of the clectro-
magnetic back scattering cross Section ogy of a finite circular

15 F16. 14. Comparison of the Kirchhoff edge-diffraction coeffi-

cients Dy, Dy, and Dy with the Braunhek coefficients Dy, and Dp,
for normal incidence (e=0). The latter coincide with our D, given
by Eq. (2) with the upper and lower signs, respectively. I ang

2 result from the two usyg] modifications of the Kirchhoff theory
and De=4(D, =+Ds) comes from the usual form of it, The ordinate
is —2(2xk)te—izi sinfD and the abscissa is 6. All the coefficients
are singular on the shadow boundary 8== but the singular factor

siné has been removed. The dark side of the screen is at §=3z/)
and the illuminated side at 0= —x/2

dent from any direction on a perfectly conducting thip
disk. They also performed accurate measurements of the
diffracted field and found excellent agreement with the
theory. Keller®® has also used it to calculate the singly
and doubly diffracted fields scattered by a perfectly
conducting finite circylar cone with a flat base hit by an
axially incident plane wave. The back-scattered field
comes primarily from the sharp edge at the rear of the
cone and may be calculated by using the diffraction
coefficient D given by (3) with the sign depending upon
the orientation of the incident electric field. The results
have been compared® with the measured values of Keys
and Primich.2 The comparison, shown in Fig. 13, indi-
cates that the theory is fairly accurate even when ka is
as small as unity. The theory has also heen applied 10
objects of other shapes by Burke and Keller 2
It has been shown® by asymptotic evaluation, thar
the Kirchhoff theory, its two usual modifications and
Braunbek’s modification all lead to expressions for the
field diffracted by an aperture in a thin screen, which
can be interpreted ag sums of fields on diffracted rays.
The expression for the field on each ray was found to be
exactly of the form (21), which is an additional corrobo-
ration of our theory. The Braunbek modificatjon vielded
exactly the diffraction coefficients (2) given by our
theory, but the various other Kirchhoff methods gave
different coefficients. The various coefficients are com-
pared in Fig. 14 from which it can be seen that the

*J. B. Keller, IRE Trans, Antennas and Prop. AP.8. 175
(1960).

3’-‘].} B. Keller, IRE Traps, Antennas and Prop. AP-9, 411
(1961). _

" J.E.KeysandR.T. Primich, Defenge Research Telecommuni-
cations Establishment, Ottawa, Canada, Rept. 1010 (May, 1959).

#]. E. Burke and J- B. Keller, Research Rept. EDL-E49.
Electronic Defense Laboratories, Sylvania Electronic Systems,
Mountain View, California (April, 1960).
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' Eirchhoff results agree with ours in the forward direc-
in, but differ considerably at other angles. Thus we
may expect the Kirchhofl theory to lead to incorrect
results at large diffraction angles.

The present method has been used by Ke_llt:r”a_ to
determine the force and torque exerted on a rigid im-
" mobile thin disk or strip by an incident plane acoustic
. wave. In this case, if # denotes the acoustic pressure, the
force on the disk is proportional to its total scattering
 ¢ross section. By Babinet’s principle this is found to be
& twice the transmission cross section of the complemen-
- tary aperture. Similarly the torque on the disk is propor-
tignal to the angular derivative of the diffraction pattern
. of the disk, evaluated in the forward direction, and this
-puucm is the negative of that of the complementary
sperture. For strips the same statements apply to the
“force and torque per unit length. Thus the results ob-
uined above for ¢ yield the force directly. By differ-
entiating the pattern f(¢) with respect to ¢ at o= —a,
we can also obtain the torque. Graphs of some of the
results for the torque are shown in Figs. 15-17.

5. CORNER OR TIP DIFFRACTION

Let us now consider diffraction by special points such
a5 the corner of an edge of a boundary surface or the
tip of a conical boundary surface. We call such points
¥ertices and assume that an incident ray which hits one
‘oeoduces infinitely many diffracted rays which satisfy
we Low of vertex diffraction: A diffracted ray and the
corresp nding incident ray may meet at any angle at a
vertex « f a boundary surface. This law follows at once
from Fermat’s principle for vertex difiraction: A vertex-
diffracted ray from a point P to a point Q is a curve
which has stationary optical length among all curves
- fm P 1o passing through the vertex.
Both of these formulations show that a ray incident
i vertex produces a two-parameter family of dif-
7,0']
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Fic. 15. The acoustic torque 7' per unit length on a strip of
.42 88 a function of the angle of incidence « for ka=>5. The
Yerial scale is the valye of T|a*P*/poc*nt(ka)? |, where P is the
- Bmlitude of the incident pressure wave, pp i the density of the
'h and ¢ is its sound speed. The values of & at which T=0

um angles which are stable if T, <0 and unstable if
The curve does not apply near a=x/2, which corresponds
28ng incidence, at which T'=0. T is an odd function of &

J- B. Reller, . Acoust. Soc. Am. 29, 1085 (1957).
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F16. 16. The acoustic -

torque T per unit length
on a strip of width 2a
as a function of ke for o
a=r/4 (45°). The ver-
tical scale is the same 1
as in Fig. 15, |
1.0+
i
30

fracted rays which leave the vertex in all directions. In
a homogeneous medium they are straight lines and the
corresponding diffracted wave fronts are spheres with
the vertex as their center. Thus the diffracted wave is
spherical, as we might expect. This expectation is
verified by the exact solution of the boundary-value
problem for the reduced wave equation, corresponding
to diffraction by a cone. This confirmation lends support
to the law of vertex diffraction. Additional support is
provided by the asymptotic evaluation® for short wave-
lengths of the various forms of the Kirchhoff approxi-
mation for diffraction through an aperture in a thin
screen. This evaluation shows that the field at any point
contains a sum of terms, one for each vertex on the edge
of the aperture. Each of these terms corresponds to a
vertex-diffracted ray, in agreement with our theory.

To determine the field on a vertex-diffracted ray let
us still consider a homogeneous medium. Then the phase
on such a ray at the distance  from the vertex is kr+¥;
where ¥, is the phase of the incident field at the vertex.
The amplitude varies as 7 since the cross-sectional
area of a tube of rays is proportional to 7>. Therefore we
write the field on the diffracted ray as

u=Cu;(e*/r). (41)

Here C is the appropriate vertex or corner diffraction
coefficient. It depends upon the directions of the inci-
dent and diffracted rays, the local geometry of the vertex
and the local properties of the media at it. Dimensional
considerations show that C is proportional to a length,
s0 It must be proportional to AL, _

The field diffracted by any cone when a plane wave is
incident is of the form (41), as we find by analyzing the
boundary value problem for the reduced wave equation.
This not only confirms our theory but enables us to
determine C when the boundary-value problem can be
solved. It has been solved for elliptic cones, including
the plane angular sector, by Kraus and Levine,* but C

* L. Kraus and L. Levine, Commun. Pure Appl. Math. 14,
49 (1961).
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F16. 17. The acoustic torque T on a circular disk of radius e
as a function of the angle of incidence & for ka=3, The vertical
scale is the value of T| P2a3/pyc (ka)z| 1, P, po, and ¢ are defined in
the caption of Fig. 15. The valyes of x at which 7'=0 are equi-
librium values, stable if To<0 and unstable if Tp>0. The
curve does not apply near a=0 (normal incidence) nor a=m/2
(grazing incidence).

has not been evaluated. For circular cones, it has been
evaluated by Felsen?® and by Siegel et 0126 The various
forms of the Kirchhoff integral for diffraction through
an aperture, when evaluated asymptotically,s yield
fields of the form (41) for each corner on the aperture
edge. Here again the resulting expressions for ¢ are
different for the different versions of the Kirchhoff
method, and none can be expected to coincide with the
exact value contained in the solution of Kraus and
Levine. We shall not consider any applications of vertex
~diffraction.

6. SURFACE-DIFFRACTED RAYS

Let us now consider an incident ray which grazes a
boundary surface, i.e., is tangent to the surface. We ag-
sume that such a ray gives rise to a surface-diffracted
ray in accordance with the /g of surface difiraction: An
incident ray and the resulting surface diffracted ray in
the same medium are parallel to each other at the point
of diffraction and lie on opposite sides of the plane
normal to the ray at this point. When the two rays lie
in different media, they obey the law of refraction,

The surface ray travels along the surface in a manner
determined by the usual differential equations for rays
on a surface. Therefore in a homogeneous medium it is
an arc of a geodesic or shortest path on the surface. At
every point the surface ray sheds a diffracted ray satisfy-
ing the law of surface diffraction. All of these properties
of surface-diffracted rays follow from Fermar's principle
Jor surface diffraction: A surface-diffracted ray from a
point P to a point ¢ 1s a curve which makes stationary
the optical length among all curves from P to @ having
an arc on the boundary surface.

To illustrate these ideas, let us consider a boundary
surface which is a cylinder parallel to the z axis. Let the

L. B. Felsen, J. Appl. Phys. 26, 138 (1955).
© ™K. M. Siegel, J. W. Crispin, and C. E. Schensted, J. Appl.
Phys. 26, 300 5955» .
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intersection of the cylinder with the xy plane be |,
smooth closed convex curve C and suppose that t,
medium surrounding the cylinder is homogeneous. T,
find a surface-diffracted ray from P to (), both of which
lie outside C, we observe that the optical length of ,
curve is proportional to its geometric length. Therefor,
to utilize Fermat’s principle we imagine a string from
P to 0, and consider it to be pulled taut. Then it wj;
consist of two straight-line segments from P and ()4,
the cylinder and a geodesic arc along the cylinder. Wi
P and () are both in the xy plane the arc is just an arc of
C; otherwise it is a helical arc along the cylinder. It may
wrap around the cylinder any number of times in ¢ither
direction, so there are countably many surface diff racted
rays from P to (),

We define a surface-diffracted wavefront to be g syr.
face orthogonal to a family (i.e., normal congruence) of
surface-diffracted rays. In the example just described |e:
us suppose that P is a line source parallel to the z ayi.
Then the surface-diffracted wavefronts which it pro.
duces are cylinders with generators parallel to the g axj.
Their intersections with the ay plane are the involyte
of the curve C.

Two examples of surface-diffracted rays are shown in
Figs. 18 and 19. In both cases the grazing ray is incident
horizontally from the left. One of the shed surface.
diffracted rays is shown in Fig. 18 and two are shown in
Fig. 19. In both cases the figures show cross sections of
opaque screens surrounded by homogeneous media.

To construct the field on a surface diffracted ray we
assume that the phase of the field increases in proportion
to optical length along the ray. The amplitude is a-
sumed to be proportional to the amplitude of the inc-
dent field at the point of diffraction. The coefficient of
proportionality involves a new surface-diffraction cocli-
cent B which depends upon local properties of the
boundary surface and the media at the point of diffru-
tion. Along the portion of the diffracted ray on the
surface, the amplitude is assumed Lo vary in accordani
with the principle of Energy conservation in a narrov
strip of rays on the surface. T hus it varies inversely
the square root of the width of this strip because o

A

F16. 18. Cross section of a screen of width 26 with a round
end of radius b. A plane wave is normally incident upon it from
the left. The dashed line is the shadow boundary. An incident
ray which grazes the end of the screen is shown together with
one of the surface diffracted rays which it produces in the shadov
region. The angle between this ray and the shadow boundary is#.
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m'wergence or divergence. However, it also decays be-
ause of radiation from the surface along the shed
diffracted rays. The decay rate is assumed to be deter-
mined by a decay exponent & which depends upon local
properties of the surface and media. The amplitude on a
shed diffracted ray varies in the usual manner and is
ional to the field on the surface diffracted ray
at the point of shedding. The proportionality factor
mvolves another diffraction coefficient which can be
shown to be the same as the coefficient B introduced
- above as a consequence of the principle of reciprocity.
. The details of this construction of the field are given for
2 linders by Keller” and for three-dimensional surfaces
f by Levy and Keller.?
. The theory has been tested by applying it to diffrac-
L tion of a cylindrical wave by a circular cylinder and
4§ comparing the predicted field with the asymptotic ex-
. pension of the exact solution. The two results agreed
- _tmily when appropriate expressions were used for the
. difraction coefficient B and the decay rate o. Thus the
 theory was confirmed and B and a were determined.
: The theory was further confirmed by making similar
" comparisons for diffraction by a parabolic cylinder, an
- diiptic cylinder (Levy*), a spheroid (Levy and Keller®)
- md the screen of Fig. 19 (Magiros and Keller®). Of
T, in all cases the same values of B and « were
|, toployed. |
*" A numerical test of the accuracy of the theory was
made by Keller® for the screen of Fig. 19. The field
* Brifrom the end of the screen in the shadow region can
b written as u=J (6,kb)e*r+ixis(kry—t, The function
Ji0.kb) was evaluated for §= m/4 as a function of b from
the exact solution of the boundary-value problem and
 drom the formula given by our theory. The results are
- %0™min Fig. 20. The upper curves and points apply to a
“reenon vhich du/dn=0; the lower ones to a screen on
*hith u=0, The solid curves are obtained when a simple
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{i&}i"‘“‘r, IRE Trans. Antennas and Propagation AP-4,
l.”%gslg)w and J. B. Keller, Commun. Pure Appl. Math.
* 5
5 B-Levy, J. Math. and Mech. 9, 147 (1060),
7o 2vy and J. B. Keller, Can. J. Phys. 38, 128 (1960).
¥ {1961); and]' B. Keller, Commun. Pure, Appl. Math.

B Reller, J. Appl. Phys. 30, 1452 (1952).
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T16. 20. The far-field amplitude |f(x/4,kb)| in the shadow of
the screen of Fig. 19 in the direction §=/4 as a function of &b.
The upper curves and points apply to a screen on which du/dn=0
while the lower ones pertain to a screen on which #=0. The en-
circled points were obtained by laborious numerical computation
of the series solution of the boundary-value probiem; the curves
were obtained from the formulas given by the geometrical theory
of diffraction. The dashed curve was obtained [rom a formula in
which an improved expression for & was used.

expression is used for the decay exponent & and the
dashed curve when a more accurate expression is used
for a. The agreement between the curves given by our
theory and the points from the exact solution appears
to be quite good for k6> 2. Similar curves for the screen
of Fig. 18 are shown in Fig. 21, but there is no exact
solution with which to compare them.

Diffracted rays have also been introduced by Franz
and Depperman® who called the associated waves
“creeping waves.” They applied them to explain oscilla-
tions in the measurements of the radar back-scattering
cross section of metallic circular cylinders. A refinement
of the method described above for determining B and «
was given by Levy and Keller.® They showed how
variation of the curvature of the diffracting surface
modifies the values of Band  determined from a circular
cylinder. The determination of the field near the dif-
fracting surface requires special considerations, de-
scribed in references 27 and 28, because the surface is a
caustic of the diffracted rays. Another special treatment
described by Buchal and Keller's is required near the
shadow boundary. Near the point of diffraction, where
the shadow boundary meets the diffracting surface, a
still different special analysis due to V. Fock and to
C. L. Pekeris is required. A uniform expression for the
field in these various regions has been obtained, in two-
dimensional cases, by Logan and Yee® by combining

®W. Franz and K. Depperman, Ann. Physik 10, 361 (1952).

#B. R. Levy and J. B. Keller, IRE Trans. Antennas and
Propagation, AP-7, 552 (1959). .

® N. A. Logan and K. S. Yee, Symposium on Electromagnetic
Theory, U. S. Army Mathematics Research Center, University
of Wisconsin, Madison, Wisconsin (April, 1961),
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diffraction by a half-plane. The upper curve and point apply to a
screen on which 9u/8n=0; the lower ones to a screen on which
#=0. Probably only the decreasing portions of the curves are
correct, and most likely the amplitude decreases monotonically
for all values of kb.

the method of Fock and Pekeris with the geometrical
considerations we have described.
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7. FURTHER DEVELOPMENTS

The geometrical theory of diffraction which we hay,
described has been applied to inhomogeneous media by Depa
Friedrichs and Keller® and by Seckler and Keller.# |.
has also been extended by the introduction of compley
or imaginary rays.?

A similar theory can be constructed to describe apy ;-
kind of wave Propagation and this has been dope 1 a
some extent for water waves, elastic waves, quantum. tc
mechanical waves, surface waves, etc. When anisotrop;, ar
media are present, or when more than one propagatio, ;}I
velocity exist, there are more kinds of rays and . )

theory is correspondingly more complicated. Howeyy
the principles are essentially unchanged.

From a mathematical point of view, the field cop.
structed by means of the present theory is the leadin,
part of the asymptotic expansion of the exact field for
small values of A or large values of £. The full asymptotic
expansion consists of additional terms in the amplitude
of the field on each ray. These terms are smaller than the
first term by factors of k= n=1,2, --.. These state.
ments have been proved in special cases, but not in
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BE. OTf‘riedrichs and J. B. Keller, J. Appl. Phys. 26, %!
(1953).

¥ B. D. Seckler and J. B. Keller, J. Acoust. Soc. Am. 31, 19
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