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— This study examines propagation over buildings
cn‘rfze puildings are located on terrain features (hills). The
dings, which are represented by a series of absorbing half-
eens, A€ assumed to lie in rows that are equally spaced
ong parallel streets, with the streets running perpendicular
. the terrain slope. Numerical results are obtained using
jccessive repetiion ~ of  the Kirchhoff-Huygens
;wpmximation. A phenomenological model based on ray
:;ufcs for diffraction over a smooth surface is proposed as a
.y to interpret the numerical results. The dependence of
Lodel coefficients on terrain parameters are obtained from

4e numerical results.
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I INTRODUCTION

Away from the high rise core of the city, base station
niennas for mobile radio are typically above or near to the
-voft »f the surrounding buildings. For flat terrain
rropagation has been modeled by multiple forward diffraction
sast rows of buildings [1]-[4]. In order to model the path loss
wr the case of buildings on rolling hills, we assume the
treets, and hence the rows of buildings are oriented
perpendicular to the plane of curvature of the hills, as shown
n side view in Figure 1, which is also assumed to be the
plane of propagation. For mobiles located on the up slope of
hills visible to the base station, as indicated by position @ in
Figure 1, the path loss can be found using the theory
previously derived for flat terrain if the angle of incidence on
the rooftops, , in that theory is replaced by the angle a; to
the local tangent plane, as indicated in Figure 1. This
method is equivalent to using an effective antenna height, as
discussed by Lee [5]. However, these results do not apply
when terrain shadowing occurs, such as at locations @ and @
in Figure 1.

We first consider cylindrical and sinusoidal terrain
variation. In order to treat the forward diffraction, each row
of buildings is modeled as an absorbing knife-edge. The field
dependence above a knife-edge is given as a function of the
field above the previous knife-edge, and a direct numerical
soltion to the Kirchhoff-Huygens approximation is
performed. Utilizing this method, over 100 knife-edges may
be considered with acceptable computation times. The results
% in indicate that a cylindrical representation for the
h‘!P . the terrain profile must be used, as opposed to single
knife edge at the hill peak, or else the resultant path loss
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values are too optimistic, particularly in the deep shadow of
the hill.

The numerical technique discussed above is 100
cumbersome to be incorporated into 2 cellular planning tool.
We therefore interpret the numerical results in terms of ray
optics in order to obtain a compact approximation. This
interpretation is similar to the creeping ray formulation for
diffraction over a smooth circular cylinder. The field strength
along the creeping ray decreases exponentially with arc
length traveled on the surface of the cylinder, with a decay
factor that depends on the radius of the cylinder. Excitation
of the creeping ray by a source is described by an excitation
coefficient and subsequent radiation into space by a launch
coefficient, which are also dependent upon the cylinder radius

[61.071.
II. MoDELING TERRAIN EFFECTS

Figure 1 illustrates in cross-section rows of houses that are
equally spaced along parallel streets, with the streets running
perpendicular to the slope of the hills. In this example the
{ransmitting antenna is placed at the maximum height of the
terrain plus house height. For area @ in Figure 1, the path
loss may be determined using the Walfisch-Tkegami model,
accounting for terrain slope by means of the local angle ;.
The path loss ratio between isotropic antennas in watts
received/watts transmitted is then given by

T, ]

(@ ® Y6

Figure 1: Rows of houses on rolling terrain. For areas 1 and
3 the angle with the local tangent may be used to determine
the path loss.

4n R

The factor P, is the diffraction loss from the last rooftop
before the mobile down to the street, and Q(o;) is the multiple
screen diffraction loss, which can be found from the
polynomial approximation [8]
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over the range 0.0/ < g, < 1.00. The dimensionless

parameter g, is given by

g, =0~Nd/ A\ 3)

where d is the separation between rows of buildings. For g, >
1.0, the previous rows of buildings have almost no effect and
0=1.0.

A. Isolated Cylindrical Hill

To facilitate the description of the field variation in
regions @ and @ of Figure 1 we first characterize the terrain
variation as that of an isolated cylindrical hill. To determine
the effects of an isolated hill we make use of the terrain
profile illustrated in Figure 2. The height of the hill plus
building height as a function of the distance x from the peak
of the hill is given by

y=yR-x* -y, +h, @

where Ry, is the hill radius and y, > 0 is the distance that the
center of curvature lies below the flat portion of the terrain.

¥
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Figure 2: Tllustration of houses on an isolated cylindrical hill
having radius of curvature R,.

The maximum slope, or grade, of the hill occurs at X and is
given by grade = -dy/dx. Knowing the grade and the
horizontal distance x,, from the peak to the foot of the hill, the
equivalent hill radius Ry, is

R, = x,\/1+(1/ grade)* ©)

This expression is used to choose realistic values for R, in
carrying out the numerical evaluation discussed below.
Examination of terrain elevation maps, suggests that the
radius of curvature of rolling terrain is typically much larger
than I km.

B. Numerical Evaluation of the Line Source Fields

Since the Fresnel zones in the UHF band out to a few km
are narrow, it is reasonable to use a two dimensional model
by assuming the geometry in Figure 2 to be uniform along z.
Propagation oblique to the street grid can be accounted for by
using the terrain profile and spacing d between rows of
buildings as seen in the vertical plane containing the
transmitter and receiver. On flat terrain this approach gives
reasonable accuracy, as compared to measurements for planes
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making angles as much as 60 to the street erid [9]. With
assumption of a two dimensional model, the excess Dath |
due to the rows of buildings and terrain will be the same f,,
point source and for the fields radiated by a line g
parallel to z. Propagation of the line source fields from
plane of one screen to the next is carried out NUmericy),
using the Kirchhoff-Huygens approximation as in U?‘-
However, truncating the integration at a finite value of vd
not follow the approach used in [1], since in that study th,
window function was tailored to the specific case of gy
incident plane wave field directed down towards the SCreeng
In this manner we can account for diffraction past 100 &
more screens, and therefore, can account for houseg on
sinusoidal and cylindrical terrain.

Il NUMERICAL RESULTS FOR A CYLINDRICAL Hirr

The half screens used to represent the rows of building
for a typical case are shown in Figure 3. The houses are Tm
high and the row separation d, is 50 m. In this figure the
base of the hill occurs at x,, = 1000 m, and the maximum
grade is 10%, so that the hill radius is 10.0 km, and its
maximum height is 50 m. The transmitting antenna j
located at x, = -1000 m, and at a height y, equal to the
maximum screen height of 57 m.
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Figure 3:  Screen profile for typical hill radius parameters.

The results of the numerical evaluation for 900 MHz are
shown in Figure 4 for the screen profile given in Figure 3.
The field strength in dB has a nearly linear variation on the
back-side of the hill (Om - 1000m), where diffraction from
rooftop-to-rooftop occurs over a cylindrical-like surface. The
minimum field strength value occurs at 1000 m, which is the
base of the hill. After this point the field strength increases
out to about 3500 m, after which it decreases slowly. The
same type of variation is found for all choices of hill radius
Ry, row separation d and frequency, and can be modeled by a
creeping wave.

The rise in field strength after the hill is attributable to the
fact that the diffracted rays are now launched from points
higher up on the hill, and thus experience less diffraction loss
before being launched. Immediately after the hill the
foregoing effect more than compensates for the usual inverse
distance dependence. However, for the rooftops far from the
hill the rays are launched from near to the top of the hill so
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o the inverse distance dependence causes a decrease in
5

*qal strength.
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Figure 4:  Field strength versus screen position distance for
he screen profile shown in Figure 3.

IV. CREEPING RAYS FOR NON-LOS ROOFTOPS

creeping ray representation for the field diffracted by
4 ciieaar cylinder is shown in Figure 5 for points outside of
the transition region centered on the shadow boundary.
Unlike the case of diffracting from absorbing screens, for
which the TE and TM polarizations have the same path loss,
in the case of a conducting cylinder the two polarizations
behave differently.
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Figure 5. Diffraction by a circular cylinder.

The asymptotic representation for the creeping ray field at
observation points behind the cylinder for an incident plane
or cylindrical wave is [6]

v'[u'_q o0
E - Efglem == 3 Dpe(R)evi-o)

p=I

(6)
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Here E;(Q;) is the incident field at the excitation point, L;
is the distance from the launch point, and the coefficients
D¢, and y 7 are functions of hill radius and frequency.

The attenuation constants Y/ ;* for TM polarization and Y ;

for TE polarization are given by

th /3 .
w;}n,e = a;t,e 20 e_rr:/ﬁ (7

The first few values of @ for the TE polarization are aj =

2.338,a$ =4.088, aj =5.521.

Near the shadow boundary where 8 is small, the sum is
slowly convergent, while deeper into the shadow, where the
higher terms in the sum have decayed more rapidly, only the
p = 1 term is important. The values of W ;f for TM

polarization are smaller than those for TE polarization.
A. Ray Optics for the Backside of the Hill

In representing the results obtained from the numerical
integration, we retain only the first term in the creeping ray
representation. To find the attenuation coefficient Wy, we
examine the field at the top of the screens on the back side of
the hill before the ray is launched. The field amplitude at
these points due to a line source at a distance L; from the top
of the hill is assumed to be of the form

|E(x,.1,) - L p,ew (8)
n?'tn E H

The coefficients Dy and y are determined from the multiple
integration results, as shown in Figure 4, by fitting the
numerical values at the farthest end of the hill. Because the
values of x, on the back side of the hill are much less than the
hill radius, the angle 8 = x/R; so that (8) predicts a linear
variation of the field, in dB with x,. In Figure 4 the variation
with x, of the field strength in dB at the top of the screens, as
obtained from the multiple integration, is seen to be nearly
linear indicating the dominance of the p = 1 term in (6). The
deviation from linearity reflects the importance near the
shadow boundary of the terms in (6) having p >1.

Figure 4 shows a comparison of the field amplitude on the
back side of the hill obtained from the approximation of (8)
with the field computed by numerical integration. The
location of the minimum field strength value (1000 m) is seen
from (8) to result from the creeping ray that travels the
greatest distance around the cylinder. As we approach the
peak of the hill from the back side using the ray optics
method the result is more optimistic than the numerical
integration result. Had more terms of the type shown in (6)
been used to fit the computed results, a better fit would have
been obtained close to the peak of the hill.

The values of y found by fitting the numerical results for
various Ry, d, and A are found to be given by the simple
approximation
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Tth 173 d
=2 - 1.04,—
1 202( 2 ] 041/)\' 9)

which reduces to the theoretical diffraction result over a

smooth hill for TE polarization [7] when vd /A =0 The
excitation coefficient, Dy in (8), is found from the fit to the
numerical results, and is approximated by the expression

(10)

I D,) =404+(~0576 +00591d / N) I R, /N ~062914d /)

B. Ray Optics After the Hill

To model the signal at the rooftops on the flat terrain
following the hill in terms of creeping rays, we make use of
(6) keeping only the first term for the fields above the flat
terrain after the hill, as shown in Figure 3. .

The numerical and ray optical results obtained using the
first term in (6) are shown in Figure 4. We have used the
value of y taken from (14) and selected a value of D; to
match the numerical results when the launch angle is fixed at
1.7 Because this coefficient is determined by fitting the ray
optics solution to the numerical integration results at a point
close to the base of the hill, the ray optical predictions deviate
by a few dB from the numerical result at greater distances. It
is believed that had more terms been included in (6), the
results would more closely match.

The variation of D, with Ry, d, and A can be
approximated by the formula

(11)
in(D,) = 3.14+(0.19+0031in(d / 1) In(R, /7)=079in(d / 3)

The magnitude of the coefficients D;"-e in (6) for a smooth
cylinder are significantly larger than those given by (1D).

V. SINUSOIDAL HILLS - SHAPE SENSITIVITY

Figure 6 (a) illustrates the path profile for a sinusoidal
varying terrain, where the cylinder of Figure 3 approximately
fits the first peak of Figure 6 (a). Figure 6 (b) shows the
numerical results for this profile. The minimum field
strength value does not correspond to the trough of the terrain
profile at 1500 m, but rather at the inflection point of the
terrain preceding the trough. This behavior is consistent with
the creeping ray interpretation, since the field at the terrain
minimum is due to a ray that is launched from a point further
up the hill, and therefore has experienced less exponential
loss then at the inflection point. Also, the second maximum
of the field strength does not correspond to second peak of the
terrain profile, but rather occurs before this point as a result
of diffraction by the previous screens. After the second peak
the field strength again decreases linearly, as was previously
described.
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Figure 6: Screen profile for a sinusoid-like terrain path (a)
and (b) the field strength predictions using the numerica] ang
ray optics approach.

Figure 6 (b) shows the ray optics results for some of the
screens between the first and second peaks indicated in Figyre
6 (a). In order to do this we replace the first peak by a
cylinder to determine the creeping ray loss, and then use the
local angle determined by the terrain to find O(a). The result
of using this method for screens near to the top of the second
peak unfortunately is overly pessimistic for two reasons,
First, the screens near the second peak are in the transition
region about the shadow boundary from the first peak, and
therefore more terms are needed in (6). Secondly, at the top
of the hill (2) is unusable because o approaches zero. The
results match closely on the second slope, but the ray optics
predictions are pessimistic near the trough where the
approximation for Q(a) is again inaccurate due to the small
local angle. However, the creeping ray approximation is
sufficiently accurate for wireless system planning at locations
on the up-slope of the shadowed hill.

Figure 7 shows the screens of a trapezoidal profile, and
the field strength at the top of the screens. From the
transmitter at Om to the screen at 1000m, there is no
significant change in the field. From 1000m to 2000m.
where the screens are at the same height as the transmitter,
the field strength falls approximately as 7 / /¥ . This is
due to the fact that since the source is 1000m from the first
screen the field incident upon the first screen looks like 2
plane wave. The results of (2] indicate that the field degrades
as~1/+/aN fora plane wave incident upon uniform height
screens with equal separations. After the screen at 2000m
there is a //N field reduction. In this range the field can be
viewed as coming from the equivalent line source at the edge
at 2000 m, which is subsequently diffracted by screens of
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form height and separation, leading to the familiar I/N
"J;ution (2. Finally on the flat portion of the terrain the
”i 4 strength begins to increase with distance and then level
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Figure 7:  Screen profile for a trapezoid-like terrain path
(a), and (b) the field strength predictions.

VI. PATH LOSS BETWEEN [SOTROPIC ANTENNAS

For the mobile system design engineer, the efficient
evaluation of path loss between isotropic antennas is of
particular interest. In this regard we generalize the previous
results for a line source by accounting for spreading of rays in
the direction perpendicular to the plane of incidence. At
points on the shadowed side of a hill, such as location @ in
Figure 1, the path loss ratio between received and transmitted

power is

A Y e-2ve

P, =|— D} P (12)
t (4:1] RL, Hod

Assuming that vertical displacements are small compared to
the horizontal displacements, R is the distance from the base
station to the mobile. Also, L; is the distance from the base
Station to the hill along a ray that is just tangent to the hill.
The diffraction loss down to the mobile from the preceding
building is given by P,, and Dy and vy are given by (10) and
(9) for the appropriate hill radius.

For locations, such as ® in Figure 1, that are shadowed by
dprevious hill, the path loss ratio is

2 -2y8
Pﬁ[i) e Dioe )R (1D

4n ) RL,L,
Whe-~ R is again the distance between the base station and the
M. Also, L; is as previously defined, and L, is the

0-7803-4320-4/58/$5.00 © 1998 IEEE

distance from the launch point on the hill to the building just
before the mobile. Here Q(c) is the multiple diffraction loss
due to the rows of houses before the mobile, and D is obtain
from equation (11).

VII. CONCLUSIONS

This work has demonstrated that multiple diffraction past
absorbing half-screens on a cylindrical path profile can be
parameterized as creeping ray behavior around a cylinder.
Consistent with the ray optics formulation, we have
determined necessary coefficients as a function of frequency,
hill radii, and screen separation. In the limit as the screen
separation approaches 0, the exponential loss factor
approaches that of TE diffraction by a smooth cylinder. The
diffraction coefficient, D), is significantly smaller than that
given by the smooth cylinder formulations. The effects of
considering houses on the terrain profile is similar to adding
a roughness factor to the diffraction results for a smooth
cylinder [10]. Using the fit equations given in this work the
path loss over buildings located on rolling terrain may be
determined.
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