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A Uniform Geometrical Theory of Diffraction for an
Edge in a Perfectly Conducting Surface
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Abstract— A compact dyadic diffraction coefficient for electromag-
netic waves obliquely incident on a curved edge formed by perfectly
conducting curved or plane surfaces is obtained. This diffraction
coefficient remains valid in the transition regions adjacent to shadow

reflection _boundaries, “where “the” diffraction coefficients of
Kéller's original theory fail. Our method is based on Keller’s
method of the canomical “problem, which in this case is the per-
fectly conducting wedge illuminated by plane, cylindrical, conical,
end spherical waves. When the proper ray-fixed coordinate system is
introduced, the dyadic diffraction coefficient for the wedge is found to
be the sum of only two dyads, and it is shown that this is also true for
the dyadic diffraction coefficients of higher order edges. One dyad
contains the acoustic soft diffraction coefficient; the other dyad con-
tains the acoustic hard diffraction coefficient. The expressions for the
acoustic wedge diffraction coefficients contain Fresnel integrals, which
énsure that the total field is continuous at shadow and reflection
boundaries. The diffraction coefficients have the same form for the
different types of edge illumination; only the arguments of the Fresnel
integrals are different. Since diffraction is a local phenomenon, and
locally the curved edge structure is wedge shaped, this result is readily
extended to the curved wedge. It is interesting that even though the
polarizations and the wavefront curvatures of the incident, reflected,
and diffracted waves are markedly different, the total field calculated

from this high-frequency solution for the curved wedge is continuous at
shadow and reflection boundaries.

I. INTRODUCTION

HIS PAPER is concerned with the construction of a
Thigh-frequency solution for the diffraction of an elec-
tromagnetic wave obliquely incident on an edge in an
otherwise smooth curved perfectly conducting surface sur-
rounded by an isotropic homogeneous medium. The surface
normal is discontinuous at the edge, and the two surfaces
forming the edge may be convex, concave, or plane. The
solution is developed within the context of Keller's geomet-
rical theory of diffraction (GTD) [1]-[3] so the dyadic dif-
fraction coefficient is of interest. Particular emphasis is placed
on finding a compact accurate form of the diffraction coef-
ficient valid in the transition regions adjacent to shadow and
reflection boundaries_ _éi&@a_fﬂ"in:gr;iqiégl'z;i_ﬁpl__i)batior‘;s_. In
treating this problem the wedge was considered first; its solu-
tion was extended later to the curved wedge.! :
According to the GTD, a high-frequency electromagnetic
wave incident on an edge in a curved surface gives rise to a
reflected wave, an edge diffracted wave, and an edge excited
wave which propagates along a surface ray. Such surface ray
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Fig. 1. Incident, réﬂected, and diffracted rays and their associated
shadow and reflection boundaries projected onto the plane normal to
the edge at the point of diffraction OF.

fields may also be excited at shadow boundaries of the curved
surface. The problem is easily visualized with the aid of Fig. 1,
which shows a plane perpendicular to the edge at the point of
diffraction Q. The pertinent rays and boundaries are pro-
jected onto this plane. To simplify the discussion of the
reflected field, we have assumed that the local interior wedge
angle is < 7. According to Keller's generalized Fermat’s prin-
ciple, the ray incident on the edge Op produces edge dif-
fracted rays ed and surface diffracted rays sr. In the case of
convex surfaces, the surface ray sheds a surface diffracted ray
sd from each point Q on its path. ES is the boundary between
the edge diffracted rays and the surface diffracted rays; it is
tangent to the surface at Qp. SB is the shadow boundary of
the incident field and RB is the shadow boundary of the re-
flected field, referred to, henceforth, simply as the reflection
boundary. If both surfaces are illuminated, then there is no
shadow boundary at the edge; instead there are two reflection
boundaries for the problem considered here. Since the be-
havior of the ray optics field is different in the two regions
separated by a boundary, there is a transition region adjacent
to each boundary within which there is a rapid variation of the
field between the two regions.

In the present analysis it is assumed that the sources and
field point are sufficiently removed from the surface and the.
boundary ES so that the contributions from the surface ray

field can be neglected. The total electric field may then be
represented as

E=E'W+E"y +E9. (1)

In which E' is the electric field of the source in the absence
of the surface, E” is the electric field reflected frora the
surface with the edge ignored, and £ 9 is the edge diffracted
electric field. The functions u’ and u” are unit step functions.
which are equal to one in the regions illuminated by the in-
cident and reflected fields and to zero in their shadow regions.
The extent of these regions is determined by geometrical
optics. The step functions are shown explicitly in (1) to em-
phasize the discontinuity in the incident and reflected fields at

e

AP
P
W

i,

P T e
Ea —_- o e e [t

~ oo

- e e o= o

P e e et

e e

i S B ]



1974

ted
l to

B e e e e T T

KOUYOUMIIAN AND PATHAK: GEOMETRICAL THEORY OF EDGE DIFFRACTION

the shadow and reflection boundaries, respectively. They are
not included in subsequent equations for reasons of notational
economy.

The diffracted field as defined by (1) penetrates the shadow
region, which according to geometrical optics, has a zero field
to account for the nonvanishing fields known to exist there.
But the correct high-frequency field must be continuous at
the shadow and reflection boundaries; hence the diffracted
field must also compensate for the discontinuities in the in-
cident and reflected fields there. In other words, the dif-
fracted field must provide the correct transition between the
lluminated regions and the regions shadowed by the edge.

The high-frequency solution described in the next sections is
obtained in the following way. A Luneberg-Kline expansion
[4] for the incident field is assumed to be given. The reflected
field is expanded similarly and related to the incident field by
imposing the boundary condition at the perfectly conducting
surface. Only the leading term is retained. Next the general
form of the leading term in the high-frequency solution for the
edge diffracted electromagnetic field is determined. The
wedge (formed by the intersection of two plane surfaces) is
treated first; its dyadic diffraction coefficient is deduced from
the asymptotic solution of several canonical problems. Some
parameters in this diffraction coefficient are seen to depend
on the type of edge illumination. They are determined for an
arbitrary incident wavefront by requiring the leading term in
the total field to be continuous at the shadow and reflection
boundary. It is found that only a slight extension of the solu-
tion for the wedge is needed to treat the more general prob-
lem posed by the curved edge.

This paper follows in a natural way from some earlier work.
In [5] the Pauli-Clemmow method of steepest descent was
employed in a manner different from that employed by Pauli
[6] to obtain a more accurate asymptotic solution for the
field diffracted by a wedge. We showed that our generalized
Pauli expansion can be transformed term by term into a
generalized form of the asymptotic expansion given by Ober-
hettinger [7]. The leading term in our expansion was found
to be more accurate than the leading term in Oberhettinger’s
expansion; furthermore, our leading term for the diffracted
field contains a simple correction factor, which permits the
field to be calculated easily in the transition region. This
property is of considerable practical importance, because it
enables one to use the GTD in the transition regions without
introducing a supplementary solution. The correction factors,
referred to here as transition functions, are simply included
with the diffraction coefficient.

In [5] only the scalar problem of plane waves normally in-
cident of the edge of the wedge is considered. In [8], this work
is extended to obtain a dyadic diffraction coefficient for a
perfectly conducting wedge illuminated by obliquely incident
blane, conical, and spherical waves. By introducing the natural
ray-fixed coordinates, the dyadic diffraction coefficient ob-
tained from each of these canonical problems is reduced to the
sum of two dyads. In other words, the matrix formed by the
elements of the dyadic diffraction coefficient is a two by two
diagonal matrix. The diagonal elements of this matrix are
simply the scalar diffraction coefficients Dy, and Dy for the
Neumann (hard) and Dirichlet (soft) boundary conditions,
'espectively, The transition functions appearing in D and D),
have the same form for the four types of illumination: in each
“35¢ only a Fresnel integral is involved. However, the argu-
Ment of the Fresnel integral depends upon the type of illu-
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mination. Qutside of the transition regions these factors are
approximately one, and Keller’s expressions for the diffrac-
tion coefficients are obtained. The asymptotic solutions de-
scribed in this paragraph help us formulate the solution for a
more general type of illumination of the wedge, as noted
earlier.

The analysis of wedge diffraction has had a lengthy history.
Only a few of the reports and papers have been mentioned
thus far. Many of the more important papers on this subject
may be found in [9] and [10]. A good review of wedge dif-
fraction and the special case of half-plane diffraction is given
in [9, chs. 6 and 8]. Recently, Ahluwalia, Boersma, and
Lewis have written some papers [11]1-[13] of special rele-
vance to the work described here. In [11] and [12) high-
frequency asymptotic expansions for scalar waves diffracted
by curved edges in plane and curved screens are described, and
this work is extended to a curved edge in a curved surface in
[13]. The authors make use of ray coordinates, and some of
their results dealing with rays and wavefronts have been help-
ful in the development of our solution. Nevertheless, there are
some noteworthy differences between their solutions and
ours, apart from the fact that their problem is scalar instead
of the vectorial problem treated here. Their formulation or
ansatz begins with the total field, and the resulting correction
of the ordinary GTD solution in the transition region is dif-
ferent from ours. Qur result is related more directly to the
form of the GTD solution; furthermore, it appears to be more
accurate when only the leading term in the two asymptotic
expansions is retained.

II. THE GEOMETRICAL-OPTICS FIELD

The geometrical-optics field, which is the sum of the leading
terms in the asymptotic expansions for the incident and re-
flected fields, is a part of our high-frequency solution for
edge diffraction. The incident and reflected electric fields are
expanded in Luneberg-Kline series

E~ -jk
N mgo (je)™

(2)

where an exp (jwt) time dependence is assumed and k is the
wavenumber of the medium. Substituting the preceding ex-
pansion into the vector wave equation for the electric field
and integrating the resulting transport equation for m = 0
[14], [15], the leading term in (2) is

E(s) ~ exp [~jk(s)] Eo(s) = E,(0)

. L P10, x
exp [-jky(0)] ]/ 1 +D s 28} exp (-jks) (3)

which is recognized as the geometrical-optics field. Here s is
the distance along the ray path and p,, p, are the principal
radii of curvature of the wavefront at the reference point
s =0. InFig. 2, p, and Pz are shown in relationship to the
rays and wavefronts

It is apparent that when s = ~P1 Or —P,, (3) becomes infinite
80 that it is no longer a valid approximation. The intersection
of the rays at the lines 1-2 and 3-4 of the astigmatic tube of
rays is called a caustic. As we pass through a caustic in the
direction of propagation the sign of p + s changes and the
correct phase shift of +7/2 is introduced naturally. Equation
(3) is a valid high-frequency approximation on either side of
the caustic; the field at a caustic must be found from separate
considerations [16], [17].
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Fig. 2. Astigmatic tube of rays.
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Fig. 3. Reflection at a curved surface.

Employing the Maxwell curl equation V X E = - jwuH, it fol-
lows from (2) that the leading term in the asymptotic ap-
proximation for the magnetic field is

H~Y.$XE C))

where Y. = v/e/u is the characteristic admittance of the me-
dium, § is a unit vector in the direction of the ray path, and E
is given by (3). From V - E = 0 one obtains

§-Ey=0. (5)

Let a high-frequency electromagnetic wave be incident on a
smooth curved perfectly conducting surface S, which is part of
our curved edge structure, The geometrical-optics electric
field reflected at Or on § (see Fig. 3) has the form given by
(3). Choosing Qg to be the reference point, it follows from
the boundary condition for the total electric field on S that

EG(0) exp [-jky"(0)] = E¥(Qg) - R =E'(Qg) - [} 8] - 2, 2,]
(6)

in which E'(Qg) is the electric field incident at Qg and R is
the dyadic reflection coefficient with €, the unit vector
perpendicular to the plane of incidence and EF'I’ ’e‘|‘|' the unit
vectors parallel to the plane of incidence as shown in Fig. 3. In

matrix notation
o -
0 -1
From (3) and (6),
P . o P05 » '
E'(s)=E'(Qr)"R ]/ ———(pqﬂ)(pgﬂ) exp (=jks)  (8)

in which p] and p§ are the principal radii of curvature of the
reflected wavefront at the point of reflection Qr. The de-
pendence of p] and p% on the incident wavefront curvature,
*he aspect of incidence and the curvature of § at Qp is given

Appendix I.

In principle, the geometrical-optics approximations can be
improved by finding the higher order terms E[(R), Ef(R), "+,
in the reflected field, but in general it is not easy to obtain

R = (N
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these from the higher order transport equations. Further-
more, these terms do not correct the serious errors in the
geometrical-optics field resulting from the discontinuities at
reflection and shadow boundaries.

1. THE EDGE DiFFRACTED FIELD

The smooth surface S has a curved edge formed by a discon-
tinuity in its unit normal vector. Equation (3) can be obtained
in a quite different way which shows that it is also the leading
term in the asymptotic approximation of the diffracted field.
Using the method of stationary phase to evaluate the integral
representation of the edge diffracted field over its wavefront
one obtains

pp
(p+5)(p' +53)

It is convenient to locate the reference point 0' at the edge
point O from which the diffracted ray emanates, see Fig. 4;
however, the edge is a caustic of the diffracted field. On the
other hand, it is clear that E rJ'(s) given by (9) must be inde-
pendent of the location of 0', hence, lim,—, o E4(0") Vb’ ex-
ists. Since the diffracted field is proportional to the field
incident at O,

E4(s) ~ E4(0") exp (-jks).  (9)

lim E40")vp = E'(Qg)'D

p'—0

(10)

where D is the dyadic edge diffraction coefficient, which is
analogous to the dyadic reflection coefficient of the preceding
section. It is assumed here that E' is not rapidly varying at
OF,.except possibly for its phase variation along the incident
ray. )

Thus the edge diffracted electric field

diey ~ i.—‘]/L -
ES(s)~E'-D oD exp (-jks)

in which p is the distance between the caustic at the edge and
the second caustic of the diffracted ray.
In [25, appendix II], it is shown that
1 1 1 1 # (8-
e P R (12)
P Pe [ pe  asin®fy

(11

wherein pj, is the radius of curvature of the incident wavefront
at Qp taken in the plane containing the incident ray and € the
unit vector tangent to the edge at Qf, H, is the associated
unit normal vector to the edge directed away from the center
of curvature, ¢ > 0 is the radius of curvature of the edge at
O, and f3, is the angle between the incident ray and the tan-
gent to the edge as shown in Fig. 5(a). The unit vectors 5 and
§ are in the directions of incidence and diffraction, respec-
tively. Equation (12) is seen to have the form of the elemen-
tary mirror and lens formulas in which f is the focal distance.
If p is positive, there is no caustic along the diffracted ray
path; however the caustic distance p is negative if the (second)
caustic lies between Qg and the observation point. The dif-
fracted field calculated from (11) is not valid at a caustic, but
as one moves outward from Qp along the diffracted ray, a
phase shift of +m/2 is introduced naturally after the caustic
is passed as in the case of the geometrical-optics field.

Since the high-frequency diffracted field has a caustic at the
edge, (11) is not valid there, and we cannot impose a condition
at Of to determine D in a manner similar to that used to find
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Fig. 4. Edge diffracted ray.
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Fig. 5. Diffraction at a curved edge,

R. Nevertheless, the matching of the phase functions at the
edge

Vi(Qp) = Y,(Qg) = Ya(QF)

is a necessary condition, which yields some useful informa-
tion about the solution. After a few simple manipulations one
obtains

AL Ar

€-F=2.57r=5.3 (13)

and from this follows Keller’s law of edge diffraction: the
angle of diffraction B4 is equal to the angle of incidence f, so
that the diffracted rays emanating from Or form a cone
whose half-angle is Bo and whose axis is the tangent to the
edge. The incident ray and the ray reflected from the surface
t Qp also lie on the cone of the diffracted rays. The equality
between the first and third quantities in (13) is used to find
Qe given the locations of the source and field points away
from the edge: in some cases this must be done by a computer
*arch procedure.

The form of the dyadic diffraction coefficient will be treated
Rext. If an edge-fixed coordinate system is used to describe

the components of the incident and diffracted fields, it has
been found that the dyadic diffraction coefficient is the sum
of seven dyads [18] , [19] in the matrix form this means that
the diffraction coefficient is a 3 X 3 matrix with 7 non-
vanishing elements. However, from (5) it is apparent that if a
ray-fixed coordinate system were used in place of the edge-
fixed coordinate system, the diffraction coefficient would
reduce toa 2 X 2 matrix, so that no more than four dyads
would be required. A further reduction in the number of
dyads can be anticipated if the proper ray-fixed coordinate is
chosen. Recall that this kind of simplification is achieved in
the case of the dyadic reflection coefficient, if the incident
and reflected fields are resolved into components parallel and
perpendicular to the planes of incidence and reflection, re-
spectively, where the plane of reflection, which contains the
normal to the surface and the reflected ray, coincides with
the plane of incidence. Analogous planes of incidence and
diffraction can be defined in the present case.

The plane of incidence for edge diffraction, referred to
simply as the edge-fixed plane of incidence henceforth, con-
tains the incident ray and the unit vector ¢ tangent to the
edge of the point of incidence Qp. The plane of diffraction
contains the diffracted ray and €. These planes are depicted
in Fig. 5; they are azimuthal planes with respect to the polar
axis containing €, and their positions can be specified E/)\y the
angles ¢’ and ¢ shown in Fig. 5(b). The unit vectors ¢’ and
¢ are perpendicular to the edge-fixed plane of incidenqe and
the plane of diffraction, respectively. The unit vector 5 = §'
is in the direction of incidence at the edge and the unit/xector
§ is in the direction of diffraction. The unit vectors Bo and
@0 are parallel to the edge-fixed plane of incidence and the
plane of diffraction, respectively, and

Bo=2'x¢9
,80 = -? X ¢

Thus the coordinates of the diffracted ray (s, 7 - Bo, ) are
spherical coordinates and so are the coordinates of the incident
ray (s', Bo, ¢), except that the incident (radial) unit vector
points toward the origin Qf.

According to Keller’s theory [3], the diffraction coefficient
for a curved edge may be deduced from a two-dimensional
canonical problem involving a straight edge, where the cylin-
drical surfaces which form the edge are defined by the bound-
ary curves depicted in Fig, 5(b). In the present discussion the
edge may be an ordinary edge formed by a discontinuity in
the unit normal vector, an edge formed by a discontinuity in
surface curvature, or an edge formed by adiscontinuity in some
higher order derivative of the surface,

Consider the z components of the electric and magnetic
fields in the presence of this surface with an edge

E,=E; +E] + 9 (14a)
Hy =0} +H] + HE (14b)
they satisfy
&
(V2+k%) { %1 =p (15)
H,

together with the soft (Dirichlet) or hard (Neumann) bound-
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ary conditions

Ez =0 (16)
or
3,
P L1

respectively, on the boundary curve and the radiation condi-
tion at infinity. The 8/8n is the derivative along the normal
to the boundary curve.

Starting with the high-frequency solutions for the z compo-
nents of the diffracted field, substituting these into (15),
and employing the methods described earlier, the asymptotic
solutions may be put into the form

Ed )
b~ s £ exp (~jks)
Dy, s(p+s)

LH } H;

in which Dy is referred to as the soft scalar diffraction coef-

ficient obtained when the soft boundary condition is used, and

Dj, is referred to as the hard scalar diffraction coefficient ob-

tained when the hard boundary condition is used.
Since

(18)

El= 1;5 sin f, (19a)
]
H; = Y. EL, sin (19b)

and similarly for the z components of the diffracted field, it
follows from (18) and (19) that

i Ei, p / |
.‘ du - fo £ P+ ) exp (—ij) (20)
| E§ E., D, s(p+s

consequently, the dyadic diffraction coefficient for an ordi-
nary (or higher order) edge in a perfectly conducting surface
can be expressed simply as the sum of two dyads
D=-B5ByDs- 86D, (21)
to first order. Since D; and Dy, are the ordinary scalar dif-
fraction coefficients which occur in the diffraction of acoustic
waves which encounter soft or hard boundaries, we see the
close connection between electromagnetics and acoustics at
high frequencies. Also, it follows that the high-frequency dif-
fraction by more general edge structures, and by thin curved
wires can be described in the form given by (11) and (21).
The balance of this paper is concerned with finding expres-
sions for D; and D, which can be used in the transition regions
adjacent to shadow and reflection boundaries in the case of
diffraction by an ordinary edge. Recently, Keller and
Kaminetzky [20] and Senior [21] have obtained expressions
for the scalar diffraction coefficients in the case of diffraction
by an edge formed by a discontinuity in surface curvature,
and Senior [22] has given the dyadic (or matrix) diffraction
coefficient in an edge-fixed coordinate system. Keller and
Kaminetzkey [20] also have given expressions for the scalar
diffraction coefficients in the case of higher order edges.
 The diffraction by a wedge will be considered first; the
ight edge serves as a good introduction to the more dif-
.alt subject of diffraction by a curved edge. As noted earlier,
the dyadic diffraction coefficient can be found from the as-
ymptotic solution of several canonical problems, which involve
the illumination of the edge by different wavefronts. It is not

PROCEEDINGS OF THE IEEE, NOVEMBER 1974

difficult to generalize the resulting expressions for the scajar
diffraction coefficients to the case of illumination. by ap
arbitrary wavefront.

IV. THE WEDGE

When a plane, cylindrical, or conical electromagnetic wave is
incident on a perfectly conducting wedge, the solution may be
formulated in terms of the components of the electric and
magnetic field parallel to the edge; we will take these to be the
Z components. In the case of a spherical wave it is convenient
to use the z components of the electric and magnetic vector
potentials, These 2z components may be represented by
eigenfunction series obtained by the method of Green’s func-
tions. The Bessel and Hankel functions in the eigenfunction
series are replaced by their integral representations and the
series are then summed leaving the integral representations.
Integral representations for the other field components in the
edge-fixed coordinate system are then found from the z (or
edge) components, except in the case of the incident spherical
wave, where the integral representations of the field compo-
nents are cobtained from the z components of the vector po-
tentials. These integrals are approximated asymptotically by
the Pauli-Clemmow method of steepest descent [23], and the
leading terms are retained. The field components are then
transformed to the ray-fixed coordinate system described pre-
viously. The resulting expression for the diffracted field can
be written in the form of (11) which makes it possible to
deduce the dyadic diffraction coefficient D. The asymptotic
solutions outlined in this paragraph are presented in detail [§] .

Summarizing the results given in [8]

(22)

in which A4(s) describes how the amplitude of the field varies
along the diffracted ray;

E%s) ~ E'Qg) - D(5, §) A(s) exp (~jks)

—I-—, for plane, cylindrical, and conical wave

a2 incidence (in the case of cylindrical wave
incidence, s is replaced by r = s sin Bo,
the perpendicular distance to the edge)

'
s . *
——, for spherical wave incidence.
s(s +5)

It follows from (12) that p = pi for the wedge. In the case of
plane, cylindrical, and conical waves p; is infinite and in the
case of spherical waves p; =s. The dyadic diffraction coef-
ficient E( 5, §') has the form given in (21), which supports the
assumptions leading to that equation.

If the field point is not close to a shadow or reflection
boundary, the scalar diffraction coefficients [3]

Als) = (23)

exp [=j(m/4)] sin 7/n

n\/2mk sin B,

DS,h(¢: ¢r? ﬁ(]) =

1 _ i
' [cos m/n = cos [(¢ ~ ¢")/n] ’ cos m/n ~ cos [(¢ + ¢')/n]]
(24)

for all four types of illumination, which is important, because
the diffraction coefficient should be independent of the edge
illumination away from shadow and reflection boundaries
where the plane surfaces forming the wedge are ¢ = 0 and
¢ =nmw. The wedge angle is (2 - n) ; see Fig. 5(b). This ex-
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pression becomes singular as shadow or reflection boundaries
are¢ approached, which further dggravates the difficulties at
these boundarieg resulting from the discontinuities in the

of order k~1/2 with respect to the incident and reflected fields.
In (24) and in €quations to follow the upper sign applies to
D; and the lower to Dy.

Grazing incidence, where ¢ =0 OT n7 must be considered
separately. In this case Dg =0, and the expression for Dy,
given by (24) must be multiplied by a factor of I/2. The need

reflected field. Nevertheless in this case it is clearly more con-

venient to regard the total field as the “incident™ fie]q. The

factor of 1/2 is also apparent if the analysis is carried out with
¢’ =0or nw.

Sin T/n = 0; hence forn = 1 the entire plane, » = 1/2, the
interior right angle, n = /M, M= 3,4,5,--. , Interior acute
angles, the boundary value problem can be solved exactly in
terms of the incident field and a finite numper of reflected

fracted field, the phenomenon is increasingly dominated by
the incident and reflected fields.

Returning now to the subject of exterior edge diffraction,
the regions of rapid field change adjacent to the shadow ang
reflection boundaries are referred to ag transition regions. In

outside the transition regions [8] is provided by (21) with

. = =ji(m/4)]
Dy (9, ¢'; ) = —22 [/ (/4)]

2n/27k sin f,

X[cot (W+(¢ ¢ )F[kL a* (- ¢)]

2n
+ cot (M) FIkL a (¢ - ¢')]
2n
5 {cot (” Hlyy )) FIKL a*(¢ + )]
2n
+ cot (H - (i: ¢ )) FlkL a™(¢p+ ¢')]” (25)

where

FIX)=2X exp (}'X)f exp (~j72) dr (26)
VX

—_ 1
Fikia) =2, /0 e"""“fe" Tar

0.4 VLo
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Fig. 6. Transition function.

in which one takes the principal (positive) branch of 1
root, and

ai(ﬁ) =2 cos? (M)
2

in which N* are the integers which most nearly sa
equations

2anNT - () =q¢
and
2mNT - (B) = -1
with
B=gzy.

It is apparent that N* N~ each have two values.

The preceding expression for the soft (s) and hard
fraction coefficients contains a transition function F
fined by (26), where it is seen that F(X) involves a
integral. The Magnitude and phase of F(X) are shown
6, where ¥ = kLa. When X is small

F(X) ~ [\/ﬁ- X exp (j 41) - —32-x2 exp (—/:”H
m
‘exp[j(Z+X)J

B .121_151_'_25]
) by s x* 'y vt e

and when X s large

If the arguments of the four transition functions in (2%
ceed 10, it follows from the above €quation that the tran:
functions can be replaced by unity, and (25) reduces to

L is a distance barameter, which was determined for se
types of illumination. It was found that

.3 o
5sin” Sy, for plane-wave incidence
'
rr . . . .
o for cylindrical-wave incidence
L= r+r (
r
585

sin? Bo,  for conical- and spherical-wave

5 incidences

the edge, and 7 is the perpendicular distance of the field po
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pression becomes singular as shadow or reflection boundaries
are approached, which further aggravates the difficulties at

* boundaries resulting from the discontinuities in the
meident or reflected fields. Combining (11), (21), and (24), it
is seen that outside the transition regions the diffracted field is
of order k™12 with réspect to the incident and reflected fields.
In (24) and in equations to follow the upper sign applies to
D; and the lower to D),

Grazing incidence, where ¢ =0 or nr must be considered
separately. In this case Ds = 0, and the expression for Dy
given by (24) must be multiplied by a factor of 1/2. The need
for the factor of 1/2 may be seen by comsidering grazing in-
cidence to be the limit of oblique incidence. At grazing
incidence the incident and reflected fields merge, so that one-
half the total field propagating along the face of the wedge
toward the edge is the incident field and the other half is the
reflected field. Nevertheless in this case it is clearly more con-
venient to regard the total field as the “incident” field. The
factor of 1/2 is also apparent if the analysis is carried out with
¢ =0or nn.

To simplify the discussion, the wedge angle has been re-
stricted so that 1 <»n < 2; however, the solution for the dif-
fracted field may be applied to an interior wedge where
0<n <1 The diftraction coefficient vanishes when
sin @fn = 0; hence for n = 1, the entire plane, n = 1/2, the
interior right angle, n = 1/M, M = 3,4,5,-, interior acute
angles, the boundary value problem can be solved exactly in
terms of the incident field and a finite number of reflected
fields, which may be determined from image theory. More-
ove' °s n = 0, even with the presence of a nonvanishing dif-
fr. field, the phenomenon is increasingly dominated by
the incident and reflected fields.

Returning now to the subject of exterior edge diffraction,
the regions of rapid field change adjacent to the shadow and
reflection boundaries are referred to as transition regions. In
the transition regions the magnitude of the diffracted field is
comparable with the incident or reflected field, and since these
fields are discontinuous at their boundaries, the diffracted
fields must be discontinuous at shadow and reflection bound-
aries for the total field to be continuous there,

An expression for the dyadic diffraction coefficient of a
perfectly conducting wedge which is valid both within and
outside the transition regions [8] is provided by (21) with

i —_Exp [-](7?{’4)]
Dy, n(9, 0" o) = 2n+/2nk sin Bo

X [cot (TH- (;;— ® ))F[kL a*(¢- ¢"]

+ cot (F_—(;;—_ﬂ) FlkL a (¢ - ¢"]

- {cot (1rr i (f; ? )) FlkL a*(¢ + ¢')]

+ 6t (ﬂ—‘%@) FIkL a™(¢ + ¢’)1” (25)

whezr.

F(X)=2/X exp (jX) f exp (-jr2)dr  (26)
Jx
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Fig. 6. Transition function.

in which one takes the principal (positive) branch of the square
root, and

N* -
2nm (ﬁ)) -

+ . 2
a (f) 72 cos ( 5

in which N* are the integers which most nearly satisfy the
equations

2anNY - (B =1 (28a)

and
2N - (f) =-n (28b)

with
B=g+¢' (29)

It is apparent that N*, N~ each have two values.

The preceding expression for the soft (s) and hard (h) dif-
fraction coefficients contains a transition function F(X) de-
fined by (26), where it is seen that F(X) involves a Fresnel
integral. The magnitude and phase of F(X) are shown in Fig.
6, where X = kLa. When ¥ is small

F(X)E[VTIX_ 2X€xp (]z—)— _52_X2 exp (—JE)J
AT
- exp [;(4 +X)] (30)

Py~ H-J__ii-ﬂii_ﬁi) G1)
Ia 8 x° 16x°)

and when X is large

If the arguments of the four transition functions in (25) ex-
ceed 10, it follows from the above equation that the transition
functions can be replaced by unity, and (25) reduces to (24).

L is a distance parameter, which was determined for several
types of illumination. It was found that

e K P &
ssin” B, for plane-wave incidence
r
rr . . - .
T for cylindrical-wave incidence
L= r+r (32)
r
s, ) )
7 sin® By,  for conical- and spherical-wave
s+s

incidences

where the cylindrical wave of radius r' is normally incident on
the edge, and r is the perpendicular distance of the field point
from the edge. A more general expression for L, valid for an

¥ o 2 e s e
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RBg = |
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(b)
Fig. 7. N*, N~ a5 functions of g and n,

TABLE |
The cotangent qs singular value of N
when at the bnundary

$= o' - T, @ SB
surface ¢=0 is shadowed

= ¢' + 7, 358
surface_ $=nT is shadowed

$ = (2n-1)n-¢", a B
reflection from surface ¢=ng

=7 ~ ¢' 3 RB
reflection from surface ¢=Q

arbitrary wavefront incident on the Straight edge, will be de-
termined later,

The large Parameter in the asymptotic approximation uged
to find Dy p is kL. For incident blane waves the approxima-
tion has beep found to pe accurate if k[
close to one, then g/, should be >3,

at(ﬁ) is a measure of the angular S€paration between the

edge diffraction N* = ¢ or land N™=-1 ¢ or I. The values
o" " as functions of n and B=¢ + ¢ 4 depicted in Figs,
7., and 7(b); these integers are particularly important near
the shadow and reflection boundaries shown as dotted lines
in the figures, Jt i seen that N* do not change abruptly with
aspect ¢ near these boundan‘es, which is 3 desirable Property.
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The trapezoigal regions bounded by the solid straight lineg
Tepresent the permissible values of Bfor0<¢, ¢' < pp with
I<n<o.

At a shadow or reflection boundary of the cotangent fupe.
tions in the €xpression for Dy 4 given by (25) becomes singy-
lar; the other three remain bounded. The location of each
boundary 4t which each cotangent becomes singular ig pre-
sented compactly in Table | In the neighborhood of the
shadow or reflection boundary

B=2mN*F (7 - ¢ (33)

where ¢ ig positive in the region illuminated by the incident or
reflected field. The * superscript of N is directly associated
with the F sign in (3 3) and the * sign in the argument of the
Cotangent in (34), Employing (30), it can be shown that

cot (H) FlkL a*(8)] ~n [VanL sgn e

2n

in the Paragraphs to follow.

Since the discontinuity in the geometrical-optics field at a
shadow or reflection boundary is compensated Separately by
one of the four terms in the diffraction coefficient, there ig no
problem in calculating the field when two boundaries are
close to each other or coincide. This occurs when ¢ = ¢
or nw and when ¢’ is close 1o nT[2 with n =~ |, The shadow
and reflectipn boundaries are real if they occur in physical
Space, which is in the angular range from ( to nw; outside this
range they are virtual boundaries., I 4 virtual boundary is
close to the surface of the wedge, as it is when ¢ is close to

stable qQuantity in the transition regions.

The high-frequency approximation for the total field being
considered here is the sum of the geometrical-optics field and
asymptotic approximation of the diffracted field.

Er 1 0 Eﬁ

o i | )
E 0 -1 |E&L

(35)

where the subscripts || and | denote components paralle! and
perpendicular to the ordinary plane of incidence, respectively,

and
/ P1 04 ;
=q/— P10 ~ iks).
f(s) (0 +5) (ph 45 %P (Jks)

(36)

St S
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EDGE

INCIDENT i
FIXED PLANE n 7
PLANE OF /ntﬁ
REFLECTION y y
i
- REFLECTED
" RAY
-
¢
~= INCIDENT RAY
EDGE FIXED
PLANE OF
INCIDENCE

Fig. 8. Edge-fixed planes of incidence and reflection.

Note that for the plane surfaces forming the wedge i = p'i,
p5 = ph, where p} | pl are the principal radii of curvature of
the incident wavefront at the point of reflection. Equation
(35) may be written more compactly as

E" ~RE f(s). 37)

The ordinary plane of incidence and the edge-fixed plane of
incidence intersect along the incident ray passing through Q.
The ordinary plane of incidence, the edge-fixed plane of re-
flection, and the cone of diffracted rays intersect at the ray
reflected from Qp. The edge-fixed plane of reflection con-
tains the tangent to the edge and the ray reflected from Q.
These planes and their lines of intersection are depicted in
Fig. 8.

Let the angle between the edge-fixed plane of incidence and
the ordinary plane of incidence be -@. It is easily shown that

angle between the edge-fixed plane of reflection and the

-uinary plane of incidence is . The components of the in-
cident electric field parallel and perpendicular to the edge-
fixed plane of incidence are given by

E'=T¢-a)E (38)

where the components of E' are parallel and perpendicular to
the ordinary plane of incidence and

CosQ - sina
T(-a)=| ; (39)
sin @ cos
From (37), the reflected electric field
E" ~RE'f(s) H(e) (40)
in the neighborhood of the reflection boundary, where
H(e)=1 (1 +sgne) 41

Is the unit step function,
The components of the reflected field parallel and perpen-
dicular to the edge-fixed plane of reflection are given by
T(e) E" = [T(@) RT(-)™! ] [T(-a) £] f(s) H(e). (42)
From (37) and R as given in (7),
T(a) RT(-a)™! =R (43)

" e from (38), (41), (42), and (43)
r i
gl 1| o] [&
i

fGs)(1 +sgne). (44)
B 2 o -1

®

The diffraction field close to the reflection boundary at
¢ =m- ¢'is given by (11) together with (25) and (34)

d i
Eg,| -1 |1 Of [ Eg
Egl 2o -1| | £,

i
VL ) e exp (-jks) sgn €

sinfo ¥ s(pe+s)

*+ terms which are continuous at this boundary. (45)

For the total field to be continuous at the reflection bound-
ary, the sum of the discontinuous terms in (44) and (45) must
vanish; hence

_ VL pe
sin B ' s(p: +5)

so that the distance parameter

exp (~jks) +f(s) =0 (46)

_ s(pk +5) o} ph sin® B,
Pe(p} *5) (P +3)

The behavior of the incident and diffracted fields at the

shadow boundary ¢ = 7 + ¢’ may be treated in the same man-

ner. After passing beyond Qf, the electric field of the in-

cident ray in the neighborhood of the shadow boundary is

Ef -1 o} |E,
8 I B

15 i - .| f©) (1 +sgne). (48)

E Py

The diffracted field close to this shadow boundary is

d i

d 2 i
ES 0 1| |E

VI Pe

sin Bo { s(pl+s)

47)

i
Ey

exp (-jks)sgn €

+ terms which are continuous at this boundary. (49)

For the total field to be continuous at the shadow boundary,
the sum of the discontinuous terms in (48) and (49) must
vanish, and again it is seen that L is given by (47). Equation
(47) is also obtained when the leading term in the high-
frequency approximation for the total field is made to be
continuous at the other shadow and reflection boundaries.
Also (47) reduces to (32) for the several types of incident
waves for which formal asymptotic solutions were derived.
We conclude, therefore, that the expression for L given by (47)
is correct when the wedge is illuminated by an incident field
with an arbitrary wavefront whose principal radii of curvature
are o and pl.

Since kL is the large parameter in the asymptotic approxi-
mation, B¢ cannot be arbitrarily small, which precludes grazing
and near grazing incidence along the edge.

The commentary on (24) in the case of grazing incidence
along the surface of the wedge also applies to (25), i.e., the
diffraction coefficient Dy, is multiplied by a factor of 1 /2 and
the diffraction coefficient Dy = 0.

If n =1 or 2,it is apparent from (27) and the integral values
of N* that

a*(B) =a(B) =2 cos® f/2. (50)
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Thus
T-8
2n

= [cot (m) + cot (W_ 6)} FlkLa(B)]
2n 2n
~2sin w/n
=—0""_ """ _ FlkLa(B)]. (51)
cos min - cos f/n

T+ . s
cot ( S ) FlkLa™ ()] + cot ( )F[kLa (3]

The edge vanishes for n = ] ang the boundary surface is simply
ane of infinite extent. It is seen that
ts and diffracted field vanish for this
case as expected. Ifnp =2 the wedge becomes a half-plane and

. n v Z€Xp [~j(m/4)]
Ds,h(¢’¢,30)—m
.{Ffuaw-,mumm (
cos [(¢ - ¢")/2] cos [(¢+¢')/2]

which can be written in the form

' a T lina)] /T ;
Ds,h(co,qb;ﬁo)=-ﬂ‘-"—“(”—’ﬁl/—;[f(kL,¢~¢)

sin B,

!

¢)]sgn (T+4' - g)

*exp [kaL cos? (¢ =

FIL, ¢ +¢') exp [ J2kL cos? MJ

2
“sgn(m- ¢ - ¢)J (53)
where
f&L,B)= _f exp (~jr) dr (54)
V2kL lcosgj2|

is a Fresnel integral,

When the diffraction coefficients given by (53) are used to
calculate the fields diffracted by hard or soft half-planes jl-
luminated by a plane wave, L =5 sin B, and the result is in

Since Sommerfeld’s solution is an éxact solution, we know
that our solution is exact for this case too. -If these half-
planes are illuminated by a cylindrical wave whose radius of
curvature is ', L = r')(y + r') in which r is the perpendicular

accuracy,

In this section on diffraction by wedges, diffraction coef-
ficients have been obtained which may be used at all aspects
surrounding the wedge, including its surfaces and the transi-
tion regions adjacent to shadow and reflection boundaries.

V. GEnErAL WEDGE CONFIGURATIONS

The treatment of wedge diffraction in the preceding section
is extended to more general edge configurations here. Our
construction of the solution is again baged on Keller's method

PROCEEDINGS OF THE IEEE, NOVEMBER 1974 *

of the canonical problem. The justification of the method i
that high-frequency diffraction like high-frequency reflection
is a local phenomenon, and locally one can approximate ap

surfaces. It will be seen that it is only necessary to modify
the expressions for the distance parameter L, which appearin
the arguments of the transition functions.

In the present treatment we do not show that our solution

p =p,f.' on both the shadow and reflection boundaries, 7 is the
distance parameter given by (47). At aspects other than in-
cidence and reflection, p within the square root term of (11)
is calculated from (12). As in the case of the wedge, we ob-

The diffraction by a straight or curved edge in a curved
screen (7 =2) is next in the order of increasing difficulty.
Whenever the surface forming the edge is curved, the region
near it is dominated by surface diffraction phenomena, which is

do not attenuate as they Propagate; these modes are known as
whisperjng-gallery modes. Both types of modes are excited by
an illuminated edge in a curved surface; however the creeping

L
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CONCAVE siDE
(b)

Fig. 9. Diffraction at the edge of a curved Screen.

edge at Og. It should be noted that in general the projection
of the surface ray sr does not coincide with the intersection
of the boundary surface S and the plane of projection.

On the concave side the whispering-gallery effect can be
described approximately by geometrical optics in the form
of a series of reflected waves whose rays form cords along the
concave reflecting surface as indicated in Fig. 9, Note that
there is a caustic on each cord. Ag glancing incidence is ap-
proached, the cord length diminishes and the description of
the phenomenon in terms of a sequence of reflections breaks
down; the geometrical-optics analysis must be truncated at
this point. If the €rrors resulting from this truncation are not
serious, the radiation from the concave side can be included in
the present analysis. .

In this case n = 2, and the scalar diffraction coefficients in
(21) are given by

) - exp [*1‘(#/4)1
D 2 = ot LN
S,h(¢1 ¢ ,ﬁo) 2 sz_k sin ﬁo

_{F[u"aw—qs')] § F[kL'a(¢+¢‘)1} 55
cos [(6-¢)/2] * cos [(¢ +¢')2]

in which the first term is discontinuous at the shadow bound-
ary, whereas the second is discontinuous at the reflection
boundary. Unlike the reflection from a Plane surface, the
divergence or spreading of the wave reflected from a curved
surface is different from that of the incidence wave; hence
the radii of curvature of the reflected and diffracted wave-
fronts at the reflection boundary are distinct from the radii of
curvature of the incident and diffracted wavefronts at the
shadow boundary. Employing arguments similar to those used
to find the distapce parameter for the wedge

1i 2 SBe +9) o pb sin? B,
Pe(py +5) (ph +35)

17 = SPe +5) 07 pf sin? 6,
Pe(pT +5) (0 +15)

(56a)

(56b)

—

) - SHADOW AND
s REFLECTION BOUNDARY'S
FOR A SOURCE AT P

Fig. 10. Grazing incidence on the edge of a curved screen.

where pl, p ph are defined as before, p} and p5 are the
principal radii of curvature of the reflected wavefront at Og,
and from (12)

1 1 2 Ao Al'_ A
== AR B (E A (57)
Pe  Pe asin® B,

As ¢’ approaches 7 we approach grazing incidence as shown
in Fig. 10. Then since P1ps > 0,L" >0 and (55) can no
longer be used to calculate the scalar diffraction coefficients.
Under these circumstances the shadow and reflection bound-
aries usually lie within the shaded region in Fig. 10, and the
transition regions associated with edge diffraction overlap
those associated with surface diffraction. If the field and
source points are both sufficiently far from the edge, we may
set the transition functions in (55) equal to unity. On the
other hand, for the field point or source point close to the
edge or for both points close to the edge, we may be able to
use reciprocity (see [25]) to calculate the field at P in Fig. 10,
if the distance parameters for a unit source located at P are
large enough.

B. Curved Wedges

We conclude by finding the scalar diffraction coefficients
for a curved (or straight) edge in an otherwise smooth curved
surface. Again we seek diffraction coefficients which can be
used in the transition regions associated with the shadow and
reflection boundaries of this structure. Both surfaces forming
the edge may be convex, both surfaces may be concave, one
surface may be convex and the other concave, or one surface
may be plane and the other convex or concave,

First, let us consider the simple case which occurs when the
lluminated surface forming the curved edge is plane, as it may
be at the base of a cylinder or cone. For this configuration
the reflected field is found directly from the incident field, as
it is in the case of the wedge, e.g., it may be easily deduced
from image theory. Thus the scalar diffraction coefficients
are found directly from (25) and the distance parameter from
(47). The calculated diffracted field may not be accurate
close to the shadowed surface if surface diffraction phe-
nomena are significant.

The more general problem where the illuminated surface is
curved is closely related to the diffraction by an edge in a
curved screen which has just been discussed; for example, the
field point and source point must not be too close to a con-
vex surface and the case of grazing incidence must be treated
separately .

We introduce the wedge tangent to the boundary surfaces
of the curved edge at QOp. The boundary £S is formed by the
intersection of this wedge with the cone of diffracted rays.
Away from the boundary £S on the cone of diffracted rays
the scalar diffraction coefficients are given by (25), except
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that distance parameter L in the argument of each of the four
transition functions may be different. As before, L is found
in each case by Téquiring the total field to be continuous at
each shadow and reflection boundary.

It is seen from Figs. 7(a) and (b) that N*, N~ associated with
the shadow boundaries at ¢’ - m,¢" +m are different from zero
only at angular distances greater than 7 from these boundaries.
When this angular distance exceeds 1 the field point is usually
outside the transition region in question, unless kL is small.
In view of the assumptions involved in extending the wedge
solution to the curved edge, the validity of the approximation
is in question for such small values of kL, so they are excluded

- here, These considerations and analogous considerations lead

us to set the N equal to the values they have in Table I.
Then

, -i(n/4
Dy y(9,4'; o) = 22 LI @A)

2sin (n/n) FlkL'a(p - ¢')]
2n+/27k sin f,

cos (m/n) = cos [(¢p- ¢')/n]

+ {cot (” z (;p ¥ )) FlEL™ a*(p + ¢')]
n

+ cot (" = (f: 9 )) FIKL™ a(p + ¢')1H (58)

in which a () = 2 cos? B/2 and a*(B) = 2 cos? (2mn - B)/2.

Again employing arguments similar to those used in the pre-
ceding section to find the distance parameters for the wedge,
one finds that L' is given by (56a), and that L™ 1™ are given
by (56b). The additional superscripts 0 and 7 denote that the

dii of curvature are calculated at the reflection boundaries
-~ ¢'and 2n-1)7- ¢', respectively.

Although the reasoning employed to find the distance pa-
rameters is the same ag that used in the preceding cases,
namely, that the total field be continuous at the shadow and
reflection boundaries, a problem arises which was not en-
countered earlier. For a given aspect of incidence it is clear
that only two of the boundaries associated with the three
transition functions exist, the other boundary is outside reaj
Space. Since neither the field or source points are permitted
close to grazing incidence at ¢' = 0 of nm, it is reasonable to set
the transition function, which is associated with the boundary
located outside the interval 0<¢ <nm, equal to one.

At grazing incidence ¢’ = 1 or (n = 1) for which L™ or
L™ vanish, the scalar diffraction coefficients are calculated by
the same procedure used for the curved screen at grazing
incidence ¢' = 7.

In the far zone where s >> the principal radii of curvature
P1, P, of the incident and reflected wavefronts at QOF and the
radius of curvature o of the diffracted wavefront at O in the
directions of incidence and reflection, (47), (56a), and (56b)
simplify to the form

_P1ps sin’ §
Pe

the appropriate superscripts are omitted here for notational
simplicity.

 interesting case occurs if there is a caustic of the incident,
1. .cted or diffracted wave on 3 shadow or reflection boundary.
The radii of curvature Py, P2, 01 p associated with such a caustic
are negative, and L may be either negative or positive, If [ is
positive, the presence of caustics at these boundaries presents
no difficulty, except at points near the caustic itself. On the

L (59)
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other hand if £ is negative, there is a problem because the tran-
sition function has two branches each with an imaginary argu-
ment. We will restrict our attention to the situation where all
the caustics on the boundary lie between the field point and
the edge; this may occur in far-zone field calculations for
eéxample.

It can be shown (see [25, appendix IT) that if L is negative
the incident (or reflected) field has one more caustic on the
shadow (or reflection) boundary than does the diffracted
field. This means that the phase of the transition function must
change by an additional 7/2 as one moves from a point outside
the transition region to the boundary, so that the transition
function must have a total phase variation of 3m/4 instead of
the m/4 phase variation shown in Fig. 6. An examination of the
two branches of the transition function at the boundary and
outside the transition region reveals that they do not have the
proper behavior.,

When a curved strip is illuminated by a plane wave from its
concave side, there is a caustic of the reflected field on the re-
flection boundaries. In treating the scattering from this strip
we have found that an adequate function is provided by

IF(kILla)] exp {j3[phase of F(klLla)] }

in which F(kILla) is the ordinary transition function given by
(26). (Note that I, and ¢ may have superscripts.) In spite of
the fact that the preceding expression has the proper behavior
outside transition regions and at shadow or reflection bounda-
ries and also appears to yield good numerical results, it lacks
theoretical justification, A satisfactory derivation of the transi-
tion function for 7 negative is being sought,

V1. Discussion

A dyadic diffraction coefficient has been obtained for an
eleg-tromagnetic wave obliquely incident on a curved edge
formed by perfectly conducting curved or plane surfaces.
Unlike the edge diffraction coefficient of Keller’s original
theory, this diffraction coefficient is valid in the transition
regions of the shadow and reflection boundaries. Although
the diffraction coefficient has been given in dyadic form in the
earlier sections, it can also be represented in matrix form, so
that the high-frequency diffracted electric field can be written

E |-p, o | [£i N
wl=l 3 1/- —E—exp (-jks) | (60)
ES 0 -by| | &) s(o +5)
with the high-frequency diffracted magnetic field
H=y,§ x g9 (61)

in which D, D, are given by

1) (58) for the curved wedge (general case),

2) (55) for an edge in a curved screen,

3) (52)or(53) fora curved or straight edge in a plane screen
with p given by (12)

4) (25) for the wedge. .

It is pointed out in Section IV that the
coefficients in cases 1) and 2) are not valid
dence and diffraction close to grazing on
forming the edge at the point of diffraction. Work is in prog-
ress to remove this limitation. Also grazing incidence on a
plane surface is a special case which requires the introduction
of a factor of 1/2 when caleulating the diffracted field.

scalar diffraction
at aspects of inci-
a convex surface
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- - ————Intersection of a principal

plane of § at Ug with §

/ — == - ——Intersection of the plane of

incidence with the plane
tangent to 5 at Q

———Extension of the BeﬁECtEd ray
below S,

Fig. 11. Geometry for the description of the wavefront reflected from the curved surface .

The large parameters (in the asymptotic approximation) are
kL or kL', kL™ hence when these are small our GTD represen-
tation of the diffracted field is no longer valid. Thus source or
field points close to the edge (s ors’ small) must be excluded;
also aspects of incidence close to edge-on incidence (By small)
must be excluded. Edge-on incidence is a separate phenome-
non, which has been discussed in [29] and [30].

Outside of the transition regions where the arguments of the
transition functions are greater than 10, the expressions for the

only one of the transition functions is significantly different
from unity,

One would expect the diffraction coefficients for the wedge
to be more accurate than those for geometries with curved
edges or surfaces because the canonical problems involve

to distance along the edge. This is verified by the work of
Buchal and Keljer [31] and Wolfe [32], who treated the dif-
fraction of a scalar plane wave normally incident on a plane
screen with a curved edge.

In calculating the diffracted field, it is assumed that the inci-
dent field g slowly varying at the point of diffraction, except

possible to €Xpress it as a sum of slowly varying component
fields, so that the diffracted field of each component can be
calculated in the usual way and the total diffracted field ob-

point of diffraction, Expressions of this type were obtained
by Zitron and Karp [33] in their treatment of the scattering
from cylinders: they are also derived in [11].

Equation (60) cannot be used to calculate the field at 4
caustic of the diffracted ray. At such d caustic it is convenient

to use a supplementary solution in the form of an integral
representation of the field. The equivalent sources in this
Tepresentation are determined from a suitable high-frequency
approximation, such ag geometrical optics or the GTD. In the
case of an axial caustic, it is convenient to employ equivalent
electric and magnetic edge currents introduced by Ryan and
Peters [34]; the use of edge currents is also described in [35].

In conclusion, we note that the Beometrical-optics field and
our expression for the edge diffracted field are both asymptotic
solutions of Maxwell’s €quations. The tota] high-frequency
field is the sum of these two fields, and away from the edge it
is everywhere continuous, except at caustics. Our solution re-
duces to known asymptotic solutions for the wedge, and it has
been found to yield the first two or three terms in the asymp-
totic expansion of the diffracted fields of problems which can
be solved differently, Furthermore, the numerical results ob-
tained by its application to a number of examples are found to
be in excellent agreement with rigorously calculated and
Measured values. Also we have been able to show [25] that
our solution is consistent with the reciprocity principle.

APPENDIX [
THE CausTic DISTANCE FoRr REFLECTION

The principal radii of curvature of the reflected wavefront
0%, 05, and the principal directions (axes) of the wavefront
are given in this Appendix. The plane of incidence may be

quite distinct from those of the reflecting surface.

Let a wavefront be incident on a curved surface S at Op as
shown in Fig. ]1. Uy, Uy are unit vectors in the principal di-
r,t\e.ctig\r;s of §at Qp with principal radii of curvature R, R, .
X1, X} are the principal directions of the incident wavefront
at Qr with principal radii of curvature py, p. £, £% are unit
vectors perpendicular to the reﬂected ray; they are determined
by reflecting the unit vectors X4, 2% in the plane tangent to §
at Op, 18
Rla=8,-27 25 (A-1)

(see Fig. 11). As will be seen, £7, 1 are not in the principal di-
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rections of the

. lf,oi 0
0h = [ ’ J
0 104

/R, 0
e i
0 1R,

2.0, 2.9,
ﬁ'ﬁx ﬂﬁz

Deschamps [36] has sh
reflected wavefront

and

=

Qo =05+ 207,07 cos o
in which the superscript -1 d

0 =l+20053i (922)2+(@21)2
T R, R,

-2 cos Gi 622 @12 @1]@21
Qﬁ = 19!2 [ Rl ® R2

i 2 2
Q52=L+2cose [(@12) +(e“)J

(A-7Tc)
ph el R; R,
with
il O =X- 0. (A-7d)
; We have diagonalized Q" to find its eigenvalues 1/p%, 1/05.
@ 3; 1 1 /1 1 cos §¢
& b =M e R
i P2 2\py p) el

5
A "? (©,,)? +(0;,)? % (©,)? +(®11)2]
1L Bt T,
i R, R,
éf,;_g VI/L IV /1 1\4cosd
& PR [y I Sl B
@ e 2 (\pi o P1 P2/ @I
el md
i ©n) - ©4) ©) - @, )’J
! 1 12 [ Pu) -~ ©Oh)°
: +4w¥@(@ufﬂ&ﬂ’
44 Jd —_— —_—
o e Ry
*' €, +(9,,)2\? a4jg[2]) 12
LR e T “)) - — (A-8)
r‘g Ry RR,
*J!'i which the plus sign is associated with P17 and the minus sign
f% with p5. This equation has the form of an elementary mirror
“i; formula, except that the reciprocal of the object distance is re-
';1 Placed by the mean curvature of the incident wavefront,
i

e
Caimit o

reflected wavefront, We now define
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The incident spherical wavefront js frequently of interest; for
this case it can be shown that

A- 1] I [sin?6, sin24g
(A-2) = glls, _[sin 2 sin” 6,
Pl2 s coséf R, R,
T
(A-3) N 1 . sin 82+sm Bl] .3 (A9)
cos* 8¢ | R, By Ry B

(A4)  ray 9 ang U,

(A-5)  with respect to the x5
€notes the inverse matrix, the

(A-7a)  parallel and perpendicul

(A-7b) The authors wish toe

in which s’ is the radius of

curvature of the incident wavefront
at Op, 0, is the angle be

tween the direction of the incidint
o

and 0, is the angle between 3 and U,,

as obtained by Kouyoumjian several years

own that the curvature matrix for the CSAarlier using a different method.

We conclude this section b

Y giving the eigenvectors of Q"
these yield the princi

pal directions of the reflected wavefront
, X3 coordinates:

: . or _10Q% - 10737 - 0f, 5%
superscript T denotes the transpose matrix, and ¢ js the angle X = N (A-10)
of incidence; (ng - ;r--) +(Q5, )
1
QJI-I Q:Z A
Q= 7 & (A-6) R =-5rx g7 (A-11)
12 Uz

where
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