

	Level 0	Level 1	Level 2	Level 3
Accuracy	Low	Moderate	High	Best
Generating Speed	Fast	Moderate	Moderate	Very Slow
Generating Cost	Low	Moderate	Moderate	High

Level 3: Calibration with exhaustive outdoor and indoor measurements

Level 1 Predicted Signal Database

Level 2 Predicted Signal Database

Level 2: Calibration with outdoor measurements and indoor modeling

Level 3 Predicted Signal Database

Level 3: Calibration with exhaustive outdoor and indoor measurements

– Assume	prefect kn	lute RSS Location: lowledge of the ante anner used to calib		ias between the user
Nı	$rssc_i = Nr.$	$ss_i - Bias$	$M = \sqrt{\sum_{i=1}^{N} (Prss}$	$(z_{s,g,l} - Nrssc_l)^2$
PSD lev	vel	Level 1 Outdoor Meas.	Level 2 Indoor Model	Level 3 Indoor/Outdoor Meas.
Indoor/Ou Discrimination		32%	78%	86%
Location	<100m	20%	45%	67%
Error Statistics	<300m	60%	90%	95%

Relative RS – Mean is 1		on: rom Both NMR and	l each roaster p	oint in PSD
$Prssr_{xgi} = Prss_{xgi} - c$	$\frac{1}{N}\sum_{j=1}^{N} P_{FSS_{d,2j}j}$	$Nrssr_{\ell} = Nrss_{\ell} - \frac{1}{N} \sum_{j}^{N}$	$\sum_{j=1}^{N} Nrso_j M(x, y)$	$= \sqrt{\sum_{i=1}^{N} (Prssr_{x,y,i} - Nrssr_{i})}$
PSD le	vel	Level 1 Outdoor Meas.	Level 2 Indoor Model	Level 3 Indoor/Outdoor Meas.
Indoor/Ou Discriminati		43%	43%	51%
Location	<100 m	54%	54%	60%
Error Statistics	<300 m	94%	94%	95%

$M_H(x,y) = M(x)$	r, w)/ $P_i(\sum^{N} N_i)$	ssr_i $M_{ci}(x, y) = M_i$	$(x, y)/P_d(\sum_{i=1}^{N} Nrasr_i)$	
	(=1	() 24H(si 3) - 24(**,3)(× er∑ *******) (=I	
PSD le	vel	Level 1 Outdoor Meas.	Level 2 Indoor Model	Level 3 Indoor/Outdoor Meas.
Indoor/Ou Discriminati		90%	90%	90%
Location	<100 m	56%	56%	65%
Error Statistics	<300 m	96%	96%	96%

Algorithm: Location With Averaging

10 NMRs were linearly averaged to form an averaged NMR to increase the Repeatability of Measurement at Handset

PSD lev	vel	Level 1 Outdoor Meas.	Level 2 Indoor Model	Level 3 Indoor/Outdoor Meas.
Indoor/Ou Discrimination		92%	92%	91%
Location	<100 m	61%	64%	78%
Error Statistics	<300 m	97%	98%	98%
The Propagation Group 34		Copyright 200	06-2009	

	Abs	Relative	Hybrid	Hybrid with Averaging
Discrimination Rate	Low	Low	High	Best
Location Error Statistics	High	Moderate	Low	Best
Location Fix Generation Time	Fast	Fast	Fast	Slow
E911 Mandate	Not good	Not good	Close	Satisfied

Indeor Outdoor Actual Indoor 26,576 (35.9%) 12,690 (17.1%) 39,266 (53.0%)
Actual Indoor 26.576 (35.9%) 12.690 (17.1%) 39.266 (53.0%
100000 11000 (00.070) 12,000 (00.070)
Outdoor 5,140 (6.9%) 29,719 (40.1%) 34,859 (47.0%
Correct Rate 76%

 Table 4.2
 Garmin V GPS effectiveness statistics based on 60,624 indoor and outdoor measurement records.

	GPS valid	GPS not valid	Sub-total
Indoor	4,069~(6.71%)	$35{,}197~(58.06\%)$	39,266~(64.77%)
Outdoer	$19{,}394~(31{.}99\%)$	1,964~(3.24%)	$21{,}358~(35.23\%)$
Sub-total	23,490 (38.70%)	$37,161 \ (61.30\%)$	60,624 (100%)

 Table 4.3 Garmin V GPS effective statistics. Percentages are compared with indoor or outdoor separately.

	GPS valid	GPS not valid	Measurement Count
Indoor	10.36% (4,069)	89.64% (35,197)	39,266(100%)
Outdoor	$90.8\%\;(19,394)$	9.2% (1,964)	21,358(100%)

The Propagation Group 42

Copyright 2006-2009

RSS Location Performance in Greenville

ĺ	PSD le	wel	Level 1	Level 3
			Outdoor Meas.	Indoor/Outdoor Meas.
	Error	$< 100 \mathrm{m}$	30%	51%
	statistics	<300m	71%	79%
	Percentage	66.7%	270 m	180 m
	statistics	95%	$580 \mathrm{m}$	530 m

Location error statistics for the relative RSS-method with limited search area and distance matrix aggregate. (10 NMRs, 6 sectors)

The Propagation Group

44

Copyright 2006-2009

			wit	th outd	oor measur	abase calibrated ement ation with outdoor door modeling
			A office and a			
Politics (01: 555-257 N	BERRADE ^T W. Hay, BAD	Indoor Test Po	oints	0	utdoor Test P	oints
PSD Leve	1767231625 W 960 2411	Indoor Test Po Level 1 PSD	ints Level 2 PS	-	utdoor Test P evel 1 PSD	oints Level 2 PSD
PSD Leve Error	el <50m			D L		
	-	Level 1 PSD	Level 2 PS	D L 6	evel 1 PSD	Level 2 PSD
Error	<50m	Level 1 PSD 25.3%	Level 2 PS	D L 6' 8.	evel 1 PSD 7.4%	Level 2 PSD 68.0%
Error	<50m <100m	Level 1 PSD 25.3% 75.9%	Level 2 PS 36.8% 77.0%	D L 6' 8: 92	evel 1 PSD 7.4% 3.5%	Level 2 PSD 68.0% 85.1%

Other References

- Federal Communication Commission, "Enhanced 911 Wireless Services," Online at http://www.fcc.gov/911/enhanced/, 1999.
 J. Warrior, E. McHenry, and K. McGee, "They Know Where You Are [location detection]," *IEEE Spectrum*, vol. 40, no. 7, pp. 20, 2003.
 C. Nerguizian, C. Despins, and S. Aes, "Indoor Geolocation with Received Signal Strength Engerprinting Technique and Neural Networks," Fortaleza, Brazil, 2004, Telecommunications and Networking ICT 2004.
 K. Pahayan and J. Makea X. Li, "Indoor Geolocation Science and Technology," *IEEE Communications Magazine*, vol. 40, no. 2, pp. 112–118, Feb 2002.
 Y. Theo: "Stundentization of Mekha Phene Dentificient for 26 Stutences" (*IEEE*

- [5] Y. Zhao, "Standardization of Mobile Phone Positioning for 3G Systems," *IEEE Communications Magazine*, vol. 40, no. 7, pp. 108–116, July 2002.
 [6] H. Koshima and J. Hoshen, "Personal Locator Services Emerge," *Spectrum, IEEE*, vol. 37, pp. 41–48, Feb 2000.
- vol. 37, pp. 41 48, Feb 2000.
 [7] R. Christ and R. Lavigne, "Radio Frequency-based Personnel Location Systems," in Security Technology, 2000. Proceedings. IEEE 34th Annual 2000 International Carnahan Conference on, Oct 2000, pp. 141 150.
 [8] S. Sakagami, S. Aoyama, K. Kuboi, S. Shirota, and A. Akeyama, "Vehicle Position Estimates by Multibeam Antennas in Multipath Environments," IEEE Transactions on Vehicular Technology, vol. 41, no. 1, pp. 63 68, Feb 1992.
 [9] R. Klukas and M. Fattouche, "Line-of-sight Angle of Arrival Estimation in The Outdoor Multipath Environment," Vehicular Technology, IEEE Transactions on, vol. 47, no. 1, pp. 342 351, Feb 1998.
 [10] G.D. Druvin Susce, "Line Wireless Channels Pentice Hall Inc. 2002
- [10] G.D. Durgin, Space-Time Wireless Channels, Prentice Hall Inc., 2002.
- [10] G.D. Durgin, space-1 me wireless channels, Prentice Haii Inc., 2002.
 [11] J. Jr. Caffery and G.L. Stuber, "Subscriber Location in CDMA Cellular Networks," *IEEE Transactions on Vehicular Technology*, vol. 47, no. 2, pp. 406 416, 1998.
 [12] J. Jr. Caffery, "A New Approach to The Geometry of TOA Location," Vehicular Technology Conference, 2000, vol. 4, pp. 1943 1949, 2000.
 [13] A.J. Weiss, "On The Accuracy of A Cellular Location System Based on RSS Measurements," *IEEE Transactions on Vehicular Technology*, vol. 52, no. 6, pp. 1508 1518, Nov 2003, 57
- 1508 1518, Nov 2003. 57
 [14] M. Aso, M. Kawabata, and T. Hattori, "A New Location Estimation Method Based on Maximum Likelihood Function in Cellular Systems," in *Vehicular Technology Conference 2001 Fall. IEEE VTS 54th*, 2001, vol. 1, pp. 106 110.
 [15] Y. Chen and H. Kobayashi, "Signal Strength Based Indoor Geolocation," in *Communications*, 2002. *ICC 2002. IEEE International Conference on*, May 2002, vol. 1, pp. 436 439.

51

The Propagation Group

- [16] S. Ahonen and H. Laitinen, "Database correlation method for umts location," Jeju, South Korea, 2003, vol. vol.4 of 57th IEEE Semiannual Vehicular Technology Conference. VTC 2003 (Cat. No.03CH37431), p. 2696, IEEE.

- 2696, IEEE.
 [17] Ping Deng, Lin Liu, and Ping-zhi Fan, "An Enhanced Data Fusion Model for Mobile Position Estimation and Its Simulation Study," Journal of China Institute of Communications, vol. 24, no. 11, pp. 166, 2003.
 [18] Shen-jian Liu, Quu Wan, and Ying-ning Peng. "A Non-line-of-sight High-resolution Location Algorithm Based on TDD for Mobile Station," Acta Electronica Sinica, vol. 30, no. 9, pp. 1288, 2002.
 [19] L Y. Kelly, Deng Hai, and Ling Hao, "On the feasibility of the multipath functoring matched for location finding in urban anyironymetr," Anched fingerprint method for location finding in urban environments," Applied Computational Electromagnetics Society Journal, vol. 15, no. 3, pp. 232, 2000.
- [2007] ZOOJ.
 [20] K. Raja, W. J. Buchanan, and J. Munoz, "We know where you are [cellular location tracking]," Communications Engineer, vol. 2, no. 3, pp. 34, 2004.
- [21] G.D. Durgin, T.S. Rappaport, and H. Xu, "Partition-Based Path Loss Analysis for In-Home and Residential Areas at 5.85 GHz," in IEEE
- Anarysis for In-roline and Residential Areas at 5.55 OFL, in TEEE GLOBECOM 98, Sydney, Australia, Nov 1998.
 [22] S. Aguirre, L.H. Loew, and Lo Yeh, "Radio Propagation into Buildings at 912, 1920, and 5990 MHz Using Microcells," in Proceedings of 3rd IEEE
- ICUPC, Oct 1994, pp. 129–134.
 [23] H.L. Bertoni, W. Honcharenko, L.R. Maciel, and Howard H. Xia, "UHF Propagation Prediction for Wireless Personal Communications," Proceedings of the IEEE, vol. 82, no. 9, pp. 1333–1359, Sep 1994.
- [24] G.D. Durgin, "Location Estimation of Wireless Terminals Using Indoor Radio Freqency Models.," Patent filed on, December 2003.

Copyright 2006-2009