Communications: Power Analysis

Earth-Lander Link

Carrier to Noise

- Rate 2/3 turbo code can achieve a C/N within 2 dB of Shannon Channel Capacity.
- C/N at Shannon Channel Capacity:
 - $CNR = 2^{\frac{C}{B}} 1 = 0.85175 dB$ (at the Shannon Limit)
- C/N needed to achieve BER of 10⁻⁶: 2.85175 dB
- For our link budget calculations, we will add an addition C/N buffer and increase it to 4dB.

Path Loss

- Pathloss = $20\log_{10}\left(\frac{4p}{\lambda}R\right) dB$
- R = 405,500 km (distance from earth to moon at apogee)
- Uplink Pathloss ($\lambda = 0.04$ m) = 222.103 dB
- Downlink Pathloss ($\lambda = 0.0375$ m) = 222.663 dB

Downlink Budget

•
$$P_T = \frac{C}{N} + P_N - G_R - G_T + Pathloss$$

•
$$P_N = kT_{sys}B_N = 129.106 \text{ x } 10^{-15} \text{ (linear)} = -128.433 \text{ dB}$$

- \circ T_{sys} = 44K
- \circ B_N = 5.625 MHz
- \circ k = 1.38 x 10⁻²³
- Multiply by 42 (number of elements in Allen Telescope Array)
- $G_R = h_A \left(\frac{pD}{\lambda}\right)^2 = 6.68543 \text{ '}10^6 (linear) = 68.2518 dBi \text{ (for all 42)}$

elements)

- \circ $\lambda = 0.0375$ m
- o η=0.63
- D=6m
- o 42 Elements
- $G_T = 44.4 \text{ dBi}$
- C/N = 4 dB
- Pathloss = 222.663

• Link Budget Calculation: $P_T = -14.4218 \text{ dBW} = 32.1263 \text{ mW}$

Uplink Budget

•
$$P_T = \frac{C}{N} + P_N - G_R - G_T + Pathloss$$

- $P_N = kT_{sys}B_N = 23.2875 \times 10^{-18} \text{ (linear)} = -166.329 \text{ dB}$
 - \circ T_{sys} = 50K
 - \circ B_N = 33.75 kHz
 - \circ k = 1.38 x 10⁻²³
- $G_R = 37.4 \text{ dBi}$
- $G_T = 44.4 \text{ dBi}$
- C/N = 4 dB
- Pathloss = 222.103
- Link Budget Calculation: $P_T = -22.026 \text{ dBW} = 6.27 \text{ mW}$

Lander-Rover Link

- In our link budget equations, we will assume a C/N of 20 dB to ensure nearerrorless transmission
- Maximum gain of a half-wave dipole antenna is 2.15dB, so we will assume a worst-case gain of 1 dB for both transmit and receive antennas for the link budget.

Path Loss

- To allow the rover to travel long distances from the lander but still communicate with it, we will assume a maximum communication distance of 10km.
- Uplink (Lander to Rover):
 - Carrier Frequency: 1 GHz
 - \circ Pathloss = 112.442
- Downlink (Rover to Lander):
 - Carrier Frequency: 900 MHz
 - \circ Pathloss = 111.527

Noise Power

- Taking into account the device nosie temperatures from the oscillators, mixers, amplifiers, and other RF devices in the link, we will assume a worst case T_{sys} of 400K.
 - Uplink (Lander to Rover):
 - B_N=22.5 kHz
 - $P_N = 124.2 \times 10^{-18} \text{ (linear)} = -159.059 \text{ dB}$
 - Downlink (Rover to Lander):
 - B_N =3.75 MHz

• $P_N = 20.7 \times 10^{-15}$ (linear) = -136.84dB

Transmit Power

- Uplink (Lander to Rover) = -28.617 dBW = 1.375 mW
- Downlink (Rover to Lander) = -7.313 dBW = 185.652 mW