
Class Project
Georgia Tech Atlanta

FALL 2010

Turbo codes Encoding/Decoding
& EXIT charts

Walid Boumerdassi, Etienne Collange & Team Space Busters

December 9, 2010

Abstract

TURBO codes are the channel coding scheme used in wire-
less cellular networks as they are able to reach nearer

to the Shannon limit. In this Section we introduce the ba-
sic definitions and notions in turbo codes, using different
research articles, we were able to to implement a turbo en-
coder/decoder. The decoding scheme relying on the BCJR
algorithm, the maximum aposteriori algoithm (MAP). Also,
one of the most important part is the analysis of the code, us-
ing an implementation of the EXIT charts [4] we were able
to study the behaviour of our turbo codes: The evolution of
the information exchanged in the structure of the decoder at
each iteration. All the important simulations and result are
analysed in the last part of this document.

1 Introduction

Over the years, there has been a spectacular growth in dig-
ital communications especially in the fields of cellular/PCS,
satellite, and computer communication. In these communi-
cation systems, the information is represented as a sequence
of binary bits. This information is then mapped, modulated
and transported in communication channels, which introduce

noise and losses. For these reasons it is important to con-
ceive efficient coding algorithms. In the last few decades,
important breakthroughs have been made, using LDPC and
Turbo codes enabling telecommunication channels to ap-
proach nearer to the Shannon channel capacity limit.
We will organize this paper, explaining our step by step ap-
proach, introducing at each parts the important notions and
materials, which helped our understanding of Turbo codes.
Hence, we first describe the encoding process relying on re-
cursive convolution and including the interleaving process.
Then, we will describe the BCJR algorithm relating [1][2],
which enabled us to implement the decoding circuit rely-
ing on a loop and using two MAP block decoders. Finally,
we will use EXIT charts to analyse the behaviour of Turbo
Codes.

2 Turbo Encoding

The fundamental turbo encoding is built using two identical
recursive systematic convolutional (RSC) code with parallel
concatenation. The encoder used in our experimentation is
an RSC with r = 1

2 . The two block encoders are separated
by an interleaver. Only one of the systematic outputs from
the two component encoders is used, because the systematic

1

output from the other component encoder is just a permuted
version of the chosen systematic output. Figure 1 shows the
structure of our turbo encoder using two RSC blocks and a
random interleaver.

Figure 1: Turbo Encoder

In this figure we can see three outputs, two of them issued
by RSC encoder 1 where c1 is the systematic sequence and
c2 the recursive convolutional sequence. Also, it is important
to notice that from the RSC encoder 2; we only issue the
convolutional part c3, the other output is discarded.

2.1 Recursive Systematic Convolutional (RSC)
Encoder

In this section, we will explain in more detail the RSC en-
coding process. As we already mentioned, the turbo encoder
uses convolutional encoder and feedback one of its encoded
output to the input. Figure 2 shows the convolutional encoder
used in our experimentation. This code is represented by the

Figure 2: convolutional encoder G= [111 ; 101]

generator matrix G = [111; 101]. Relying on the convolu-
tional structure the RSC encoder is obtained by feeding back
the output c1 form the previous figure to the input. Thus the
final structure of our RSC encoder is obtained on Figure 3
the output c1 is the systematic sequence and c2 the encoded
sequence.

Figure 3: RSC encoder, G= [111 ; 101]

2.2 interleaving

Interleaving is a process of rearranging the ordering of a data.
The inverse of this process is called deinterleaving which re-
stores the received sequence to its original order (used in the
turbo decoding). Interleaving is a practical technique to en-
hance the error correcting capability of coding. In turbo cod-
ing, interleaving is used before the information data is en-
coded by the second component encoder (see figure[1]). The
basic role of an interleaver is to construct a long block code
from small memory convolutional codes, as long codes can
approach the Shannon capacity limit. Secondly, it spreads
out burst errors [3]. The interleaver provides a scrambled
data to the RSC encoder 2 and decorrelates the inputs to the
two decoder blocks, so that the BCJR algorithm based on un-
correlated information exchange between the two component
decoders can be applied. The final role of the interleaver is
to break low weight input sequences, and hence increase the
code free Hamming distance or reduce the number of code-
words with small distances in the code distance spectrum.
The interleaver plays a major role in the performance of turbo
codes. There are different interleaving types, which could be
implemented in the process of coding and decoding of turbo
codes. In our experiment we used a random interleaver that
uses a fixed random random permutation in order to scramble
the data.

2.3 The Trellis Diagram

The construction of the trellis diagram enables us to describe
the behaviour of the turbo encoder and is a key element in the
process of decoding. This Trellis representation is obtained
from its state diagram. (see figure 4)

For the turbo encoder, the trellis is terminated by inserting
m = K-1 additional bits after the input sequence, where K
is the number of columns in the generator matrix G. These

Team Space Busters 2 Project Report, ECE 6390

Figure 4: (State Diagram of the encoder

additional bits drive the encoder to the all-zero state (trellis
termination).
Using the different described blocks: RSC encoder, Inter-
leaver and Trellis Termination, we were able to implement
our Turbo Encoder shown on Figure 1.

3 Turbo Decoding

In this section, we will describe the process of decoding us-
ing the BCJR algorithm.
Actually, The structure of a parallel turbo decoder is show
on Figure 5. It consists of a pair of decoders which work
cooperatively in order to refine and improve the estimate of
the original bits. The decoder are based on the BCJR algo-
rithm, also called MAP (Maximum aposteriori probability)
algorithm. The operation relies on soft decision information
learned from each other.

After initialization the soft decision of one decoder noted
Le and named the extrinsic information (described in next
section 3.2) is used to initialize the other decoder. The de-
coded information is cycled around the loop until the soft de-
cisions converge on stable set of values. In this case, we use
the last extrinsic information issued from the first decoder to
compute the estimate values of the message.

3.1 BCJR algorithm

The BCJR algorithm is an algorithm for MAP decoding of
error correcting codes defined on trellises (principally con-
volutional codes). The algorithm is named after its inventors:
Bahl, Cocke, Jelinek and Raviv . This algorithm is critical to
modern iteratively-decoded error-correcting codes including

Figure 5: Turbo decoder circuit

turbo codes and low-density parity-check codes. In this sec-
tion we will define the BCJR algorithm using [1][2]. Let us
first introduce the different notation:

• The transmitted message elements is yk,i = {xk, pik}
depending on the encoder output i ∈ {1, 2}, where xk
is the systematic code, p1k the parity check code from
RSC encoder 1 and p2k RSC encoder 2.

• The received code elements is y′k,i = {x′k, p′i,k} i ∈
1, 2 and the vector on the received code depending on
the encoder’s outputs is y’ = y′1,N = {y′1, y′2, ..., y′N},
where N is the length of the message

• The Extrinsic information Lei,j form decoder i to de-
coder j, where (i, j) ∈ {1, 2}2

• The Apriori information La,k form decoder k ∈ {1, 2}

• The MAP soft decision :

Lmap(xk) = log{Pr(xk=+1|y’)
Pr(xk=−1|y’)}

Hence, using the Trellis notation introduced in Figure 4,
where sk ∈ S is the state of the encoder at time k, S+ is
the set of pairs (s′, s) which corresponds to the transition
(sk−1 = s′) → (sk = s) caused by the data input xk = +1.
Similarly, S− is defined for data input xk = −1. We re-
mark that by using the Baye’s theorem at the numerator and
denominator, we can simplify this expression by suppressing
P (y’). Then we obtain this expression:

Pr(xk = +1|y′)
Pr(xk = −1|y′) =

∑
(s′,s)∈S+ Pr(sk−1 = s′, sk = s, y′)

∑
(s′,s)∈S− Pr(sk−1 = s′, sk = s, y′)

Furthermore, the development of the element in this ex-
pression will introduce other function (γk,αk and βk) such
that:

Pr(sk−1 = s′, sk = s, y′1,N) = Pr(sk−1 = s′, y′1,k−1).

Team Space Busters 3 Project Report, ECE 6390

Pr(sk = s, y′k|sk−1 = s′).P r(y′k+1,N |sk = s) =

αk−1(s
′).γk(s

′, s).βk(s)

In the following, we will introduce the meanings of these
functions, the different steps and calculations used to obtain
these expressions are given in reference [1][2]. Hence, the
function αk(s′) is the probability of arriving at a branch in
a particular state with the sequence of the noisy observa-
tions y′1,k = {y′1, y′2, ..., y′k}, which lead to that state. Us-
ing forward recursion we can express this function in terms
γk(s′, s):

αk(s) = Pr(sk = s, y′1,k)

=
∑

s′
Pr(sk−1 = s′, y′1,k−1).P r(sk = s, y′k|sk−1 = s′)

=
∑

s′
αk−1(s

′).γk(s
′, s)

However, in the implementation of the BCJR we observed
using MATLAB some instabilities, with further reading and
using [2], we were able to correct this, by normalizing these
functions, thus we used:

αk(s) =

∑
s′ αk−1(s′).γk(s′, s)∑

s
∑

s′ αk−1(s′).γk(s′, s)
(1)

The function βk(s) corresponds to the probability of an ex-
isting branch via a particular state s and a sequence of noisy
observations y′k+1,N = y′k+1, y

′
k+2, ..., y

′
N which finish off

the trellis. This time, using a backward recursion we can ex-
press these in terms of γk(s′, s):

βk(s
′) = Pr(y′k+1,N |sk = s)

=
∑

s

Pr(sk+1 = s, y′k+1|sk = s′).P r(y′k+2,N |sk = s′)

=
∑

s′
γk+1(s

′, s).βk+1(s)

For the same reason of stability, we normalize these coeffi-
cient and use:

βk(s
′) =

∑
s′ βk+1(s).γk+1(s′, s)∑

s
∑

s′ βk+1(s′).γk+1(s′, s)
(2)

Finally, the function γk(s′, s) represents the probability of
the transmitted signal an parity bit y′k knowing the previous
state. This function can be approximated by:

exp{1
2
(xkLa(xk) + xkLcx

′
k + pkLcp

′
k)} (3)

Where La is the apriori information issued from the previous
decoder, Lc =

2
σ2 depends on the SNR used. We also use the

Trellis matrix expressing xk and pk for a certain state tran-
sition. Finally x′k and p′k are respectively the noisy message
and parity bit at the reception and p′k depends on the decoder.

3.2 implementation of the BCJR Algorithm

In this section we will describe the algorithm implemented
on MATLAB in order to decode turbo codes. We will ex-
plain step by step and using the notation introduced at the
beginning of this section and also referring to[2]:

=======Initialisation===========
Decoder 1:

• α1
0(s) = δs,0

• β1
N (s) = δs,0

• Le2,1(xk) = 0 for k = 1, 2..., N There were no ex-
change from D2-> D1 we are in the first iteration

Decoder 2:

• α2
0(s) = δs,0

• β2
N (s) = α2

N (s) for all s (set after computation of
alpha2N (s) in the first iteration)

• Le1,2(xk) for k = 1, 2..., N we obtain the extrinsic in-
formation form D1 after the first iteration, and use this
interleaved value as the apriori information L2

a

===============================
======The nth iteration===

Decoder 1:
for k = 1 : N

• Get y′k = (x′k, p
′
1,k)

• First compute γk(s′s) from eq(3) for all allowable
state transitions where the apriori information is L1

a =
π−1(Le2,1) the deinterleaved extrinsic information from
the Decoder 2

• Compute α1
k(s) for all s using eq(1)

end
for k = N : −1 : 2

• Compute β1
k−1(s) for all s using eq(2)

end
for k = 1 : N

• Compute

Le1,2(xk) = log{
∑

s∈S+ α1
k−1(s

′).γk(s′,s).β1
k(s)∑

s∈S− α1
k−1(s

′).γk(s′,s).β1
k(s)

} using
the Trellis function see Figure 6 for summing on respec-
tively on S+ and S−

Team Space Busters 4 Project Report, ECE 6390

end

Decoder 2:

for k = 1 : N

• Get y′k = (π(x′k), p
′
2,k), the interleaved message and

noisy parity check 2 form encoder 2.

• Compute γk(s′s) from eq(3) for all allowable state tran-
sitions where the apriori information is L2

a = π(Le1,2)
the interleaved extrinsic information from the Decoder
1, becomes the apriori information.

• Compute α2
k(s) for all s using eq(1)

end
for k = N : −1 : 2

• Compute β2
k−1(s) for all s using eq(2)

end
for k = 1 : N

• Compute

Le2,1(xk) = log{
∑

s∈S+ α2
k−1(s

′).γk(s′,s).β2
k(s)∑

s∈S− α2
k−1(s

′).γk(s′,s).β2
k(s)

}

end
===============================

==== After the last iteration==
for k = 1 : N

• compute the Lmap1 issued form decoder 1
Lmap(xk) = La(xk) + Lcx′k + Le1,2
Using the values obtained at the last iteration of the
code.

• if Lmap(xk) > 0
decide xk = +1
else
decide xk = −1 end

==============================

4 EXIT charts

An EXIT chart, which stands for Extrinsic information
transfer chart, can be seen as a tool to aid the construction of
good iteratively-decoded error-correcting codes, especially
Turbo Codes and Low-Density Parity-Check Codes. EXIT

Figure 6: Transition states for G = [111; 101] used in the
calculation of the coefficientγ, where S+ corresponds to the
transition (s′, s) with xk = +1 in the Trellis Diagram

charts were developed by Stephan ten Brink, who used the
concept of extrinsic information developed in the Turbo
coding community.
Basically, in the context of turbo codes, an EXIT chart is
the reunion of two curves that characterize the two decoders
used in a Turbo decoder. Each curve represents a relation
between the input and the output of one decoder, this relation
is the mutual information between the output of the decoder
(Le: the extrinsic information) and the initial message
that was encoded before passing through the channel,
with respect to the mutual information between the input
of the decoder(La: the a priori information) and the message :

I(x, Le) = F (I(x, La))

As we have seen before, in a Turbo decoder the extrinsic
information of the first decoder (Le1) is used as the a pri-
ori information of the second decoder (La2) and vice versa.
Hence, by plotting on the same graph:

I(x, Le1) = F (I(x, La1))
I(x, La2) = F (I(x, Le2))

We will be able to evaluate the minimal number of iterations
that will be needed for the Turbo decoder to converge. The
two curve necessarily cross for a mutual information of
1 because if the a priori information is entirely correlated
with the initial message (I(x, La1) = 1) then the decoder
will necessarily outputs an extrinsic information entirely
correlated with the initial message to (I(x, Le1) = 1).
Therefore, by jumping from one curve to the other until we
reach a mutual information near from the unity, we obtain
the trajectory of the iterative decoder and the number of

Team Space Busters 5 Project Report, ECE 6390

jumps is an estimation of the minimal number of iteration in
which the Turbo decoder converges. On this graph, we can

Figure 7: Example of an EXIT chart [4]

find a typical EXIT charts with the trajectory of the decoder
between the two curves of Ie1(Ia1) and Ia2(Ie2). In order
to trace EXIT charts of the turbo codes that we implemented,
we used a method described by Stephan ten Brink himself
in the paper "Convergence Behaviour of Iteratively Decoded
Parallel Concatenated Codes" [4], where he explains how to
trace the curve Ie(Ia) for a single convolutional decoder.
The idea is to try to decode a encoded message with a range
of different a priori information that is chosen specifically to
obtain a range of Ia that is well spread between 0 and 1. A
good repartition for La is obtained with a variation of µ in
the following expression:

La = µ.x+ n

Where x is the initial message and n is a Gaussian noise with
variance

√
(2.µ).For each La, we have to compute Ia and Ie

with the following formulas:

Ia = 1
2 .

∑
x=−1,+1

∫+∞
−∞ Pa(ε|X = x)

×log2{ 2Pa(ε|X=x)
Pa(ε|X=1)+Pa(ε|X=+1)}dε

Ie = 1
2 .

∑
x=−1,+1

∫+∞
−∞ Pe(ε|X = x)

×log2{ 2Pe(ε|X=x)
Pe(ε|X=1)+Pe(ε|X=+1)}dε

Where Pa and Pe are respectively the probability density
functions of La and Le, which we will estimate with Monte

Carlo simulation. Note that x is a block of thousands of bits
so La has also a thousands values and we can estimates Pa

by histogram measurements, Selecting bits of La where x is
1 and computing an histogram of this values, we get an es-
timations of Pa(ε|X = +1). Similarly, by selecting bits of
La where x is -1, we get an estimations of Pa(ε|X = −1).
The same method is used to compute Pe, thus we can plot the
EXIT chart.

4.1 Simulation

Figure 8: The evolution of the BER in function of the number
of iterations

We realized several simulations the implemented Turbo
code. The first simulation on Figure 8, was realised to
verify if the decoder was well implemented by looking at
the evolution of the Bit Error Rate after each iterations. To
this end, we just had to perform soft decoding at the end
of each iteration to see that the decoded message is getting
closer and closer to the initial message when the number of
iteration is increasing.
On the previous curve, we can see that the BER decreases
exponentially and approach 0 as the number of iteration
increases.

The second simulation consists in monitoring the evolu-
tion of the Bit Error Rate at the end of the decoder when the
Signal to Noise Ratio evolves. In order to obtain significant
values for the BER, we had to generate as many input
messages as needed to reach a certain amount of errors for
each values of the SNR. If we had just sent one message, the
number of errors would have been too low to consider the

Team Space Busters 6 Project Report, ECE 6390

BER as a significant value. The used code with the generator
matrix [1 1 1; 1 0 1], is unpunctured on Figure 9 we have an
example of the evolution of the BER with only 6 iterations:

Figure 9: BER in function of different values of the SNR
expressed in dB

The BER decreases regularly from 0 to 0.7dB but we
can notice that after 0.7dB, the BER is decreasing more
slowly. Finally, fur further studies of our implementation, we
realized an EXIT chart analysis of our decoder. In order to
do that, we had to write another code to implement the Ten
Brink’s method that was previously presented. This code
allows us to plot the mutual information (Ie) between the
extrinsic information at the output of convolutional decoder
and the message, with respect to the mutual information (Ia)
between the a priori information at the input of convolutional
decoder and the message for a certain range of signal to
noise ratios: We can see on Figure 10 that when the SNR
increases, the extrinsic information Ie augments, in addition
we can obtain high values of extrinsic information even
when Ia is null. This is consistent because when the channel
is good, the input of the decoder contains few errors so
even with an apriori information totally uncorrelated with
the initial message, the decoder can output an estimation
of the message that make sense, but when the channel
introduces more noise, the decoder cannot estimate the
message without an efficient a priori information that has a
good apriori informationIa.
We can also notice that hopefully all curve converge to the
point (1,1), this is because when Ia equals 1 then the a
priori information of the decoder is perfectly correlated to
the initial message so the extrinsic information at the output

Figure 10: This Graph represents the Extrinsic information
expressed in function of the Apriori information

must be perfectly correlated to the initial message too, if it
was not the case, it would mean the decoder has a negative
effect because it would lose information about the message.
Then we choose to plot the EXIT chart for a signal to noise
ratio of 0.2dB just as an example because it gives a good
shape to understand the trajectory of the decoder during a
simulation Figure 11.

Team Space Busters 7 Project Report, ECE 6390

Figure 11: Theoretical EXIT chart with one decoder at
SNR=0.2dB

The next graphs on Figure 12,13 and 14 show the EXIT
charts for different values of SNRs. Also, it is important to
mention that the black curve represents the trajectory of our
decoder when we perform a simulation with the same SNR.
We insist on the fact that the EXIT chart is predicted outside
and before the simulation whereas the trajectory is computed
during each iteration within the simulation. In the following
graphs we can that the two match quite well.
Actually, we can observes that the decoder is always near one
of the two curves of the EXIT chart before they converge to
a central point, when the decoder converges.

Figure 12: EXIT chart and trajectory of the decoder for
EbN0= 0.2 dB

Figure 13: EXIT chart and trajectory of the decoder for
EbN0= 0.5 dB

Figure 14: EXIT chart and trajectory of the decoder for
EbN0=1 dB

Team Space Busters 8 Project Report, ECE 6390

5 Conclusion

The understanding of the BCJR algorithm, enabled us to
succeed in implementing a Turbo Code on MATLAB. We
realized several analyses using the EXIT charts representa-
tion, which show similar results compared to the original
Ten Brink’s work. Further studies could be realized using
different mapping at the level of the encoder and the in-
terleaver(diagonal interleavers, circular-shifting interleavers,
etc.). We tried to propose a scalable structure to our source
code on MATLAB for this purpose.

Appendix: Instructions to run the code

The source codes includes files:

• ExitchartsPredicted.m

• trellis.m

• TurboCode_ Simulation.m

• TurboDecode1.m

• TurboEncode.m

Instructions to run the code: At first you have to unzip
our archive, keep all the matlab files in the same folder and
run the programs from this folder.
There are two main programs that you can launch:

1. TurboCode_ Simulation.m is the main program of our
Turbo code simulation. If you run it, it will launch an
analysis of the BER with respect to a range of SNR and
plot the result. You can easily modify some parameters
at the beginning of this file to adapt the simulation:

• The number of iterations that will be performed in
the turbo decoder. (nb_ iter at line 9)

• The range of SNRs that will be used to evaluate
BER’s evolution. (EbN0_ db_ vect at line 18)

• Be careful, with a SNR too high or too many iter-
ations, the simulation can become very long!

You can also modify two parameters in order to run the
simulation for different purposes:

• EXIT at line 2: Put the value 1 if you want to draw
the trajectory of the decoder in the EXIT chart dur-
ing the simulation. You will have to run the other

program (EXIT chartsPredicted.m) and merge the
curves to have graphs similar to those in our re-
port.

• BER_ IT at line 6: Put this the value 1 if you want
to draw the BER with respect to the number of
iterations.

When EXIT=1 or BER_ IT=1, EbN0_ db_ vect be-
comes only one value of SNR at which we want to eval-
uate the EXIT chart, you have to set up this value in the
(if EXIT==1 | BER_ IT==1) at line 15.

2. EXIT chartsPredicted.m is the program we used to plot
EXIT charts. The only parameter that you can change is
the range of SNR (EbN0_ db_ vect at line 5) on which
you want to plot the EXIT charts. Usually we put only a
value in EbN0_ db_ vect because it can become messy
when several EXIT charts are plotted in the same graph.
To obtain an EXIT chart with the corresponding trajec-
tory of our decoder for a certain SNR, proceed as fol-
lows:

• Launch EXIT chartsPredicted.m with the wanted
SNR (e.g.: EbN0_ db_ vect= 0.5)

• A figure with the EXIT chart will appear, do not
close it, and run TurboCode_ Simulation.m with
EXIT=1 and the same SNR (e.g.: EbN0_ db_
vect= 0.5).

• The trajectory will appear on the previous fig-
ure. If the trajectory does not reach the point of
convergence, you have to start again from 1 and
increase the number of iterations in TurboCode_
Simulation.m so that there are enough iterations to
achieve convergence.

Team Space Busters 9 Project Report, ECE 6390

References

[1] EXIT Chart Analysis for Compressive Turbo Codes - Bi-
lal Riaz Department of Electrical and Computer Engi-
neering McGill University Montréal,Canada, 2009, 126
pages

[2] A turbo Code Tutorial - William E. Ryan, New mexico
State university

[3] Optimal choice of interleaver for turbo codes. - Shobha
Rekh, Dr.S.Subha rani, Dr.A.Shanmugam, Academic
Open internet Journal Volume 15, 2005

[4] Convergence Behavior of Iteratively Decoded Parallel
Concatenated Codes - Stephan ten Brink, Member IEEE,
IEEE Transaction on Communications, VOL. 49, No. 10,
October 2001

[5] Evaluation of Soft Output Decoding for Turbo Codes -
Huang Fu-hua, Master’s Thesis, 1997-05-29

[6] Bit Error Rate Estimation for Turbo Decoding - Nick
Letzepis, Member, IEEE, and Alex Grant, Senior Mem-
ber, IEEE, IEEE Transaction on Communications, Vol.
57, NO. 3, March 2009

[7] The EXIT Chart Ű Introduction to extrinsic information
transfer in iterative processing - Joachim Hagenauer, In-
stitute of Communications Engineering (LNT), Munich
University of Technology (TUM); 2005

Team Space Busters 10 Project Report, ECE 6390

