
The Solution

The first thing we want to determine is the latitude of the crash site. We know
that the SARSAT satellite, orbiting the Earth along the −76◦ longitude line,
crosses the equator at the time 0 seconds. From that point the satellite listens
to the emitted signal from an EPIRB of the crashed plane and analyzes its
frequency with respect to time. Figure 1 shows the result.
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Figure 1: The received frequency of the EPIRB signal with respect to time.

At the point in time when the satellite reaches the latitude of the crash site, the
velocity vector of the satellite and the wave vector of the signal emitted from
the EPIRB will be exactly perpendicular to each other. Consequently, there
will be no Doppler shift in the received signal at the satellite and the received
frequency will be equal to the actual transmit frequency of the signal.

The received frequency changes fastest around the point in time when the
Doppler shift is zero, hence by determining when that happens we know when
the satellite crosses the latitude of the crash site. Now, let us define fr(t) as
the received frequency with respect to time. The Doppler shift in the received
signal is zero when the time derivative of fr(t), dfr(t)/dt, takes the maximum
value. We analyzed dfr(t)/dt (see Figure 2) and determined that it reaches
the maximum at the time 438 seconds. The received frequency at that time is
406000070 Hz and equals the transmit frequency.
Since we set the time to 0 when the satellite crosses the equator, the latitude of
the crash site equals the angle that the satellite traverses in 438 seconds. The
angular velocity of the satellite equals

ωs =
vs

r
=

vs

Re + h
=

7.3336 km/s
6380 km + 850 km

= 1.014329 · 10−3 rad/s,

where vs, Re and h designate the velocity of the satellite, the radius of the
Earth and the altitude of the satellite from the Earth’s surface, respectively.
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Derivative of the received frequencies with respect to time

Figure 2: The derivative of the received frequency with respect to time.

The latitude of the crash site, α, is thus

L = ωt = 1.014329 · 10−3 rad/s · 438s = 0.444276 rad = 25.455◦.

The calculation of longitude is considerably more difficult. While various
approaches can be applied to solve this problem, we chose one that in our
opinion is elegant and provides a very good estimate of the actual longitude of
the crash site.

The basic idea is to calculate the range of the crash site from the satellite
when the satellite crosses the latitude of the crash site. We found a research
paper [1] that describes how that range can be derived by carefully defining the
geometry of the problem and solving a set of equations. Figure 3 shows the
geometry as defined by the authors in [1].

The point C on the bottom of the figure represents the center of the Earth,
while the point A represents the satellite as it crosses the latitude of the crash
site. Since the satellite is riding on a circular orbit with the altitude h, the
length of CA is Re + h. The point B represents an arbitrary location on the
satellite’s orbit, hence the length of CB is equal to CA = Re + h. The point
O represents the center of the coordinate system and was chosen to be at the
intersection of CA and a line that is perpendicular to CA and goes through
the point E that represents the crash site. The length of OE, denoted as Z0,
can hence be interpreted as the distance of the crash site to the line connecting
the center of the Earth and the satellite when at A. When the satellite is at A
its subpoint is located on CA somewhere above O, since Rp is inevitably less
than Re. The angle that the satellite traverses when traveling between A and
B is denoted as Θb and αb denotes the angle between the velocity vector of the
satellite when at B and the wave vector of the emitted EPIRB signal as seen by
the satellite at B. We will need some of the remaining notations from Figure 3,
but we do not discuss them here since they are quite self-explanatory.
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Figure 3: The geometry of the system (from [1]).

The first objective is to calculate the distance between the satellite when
at A and the crash site. With this in mind we start by stating the following
relationships from Figure 3:

R2
a = R2

ax + Z2
0 (1)

R2
e = R2

p + Z2
0 (2)

Rax = Re + h − Rp (3)
R2

b = R2
bx + Z2

0 (4)
R2

bx = (Re + h)2 + R2
p − 2Rp(Re + h) cosΘb. (5)

By plugging (2) and (5) into (4) we get

R2
b = (Re + h)2 + R2

e − 2Rp(Re + h) cosΘb. (6)

It is shown in [1] that
Rp = Rb

cosαb

sin Θb
(7)

and by using this result we can expand (6) to

R2
b = (Re + h)2 + R2

e − 2Rb(Re + h)
cosαb

tan Θb
, (8)

which is a quadratic equation for Rb with the solution

Rb = −(Re + h)
cosαb

tan Θb
+

√√√√(((Re + h)
cosαb

tanΘb

)2

+ R2
e + (Re + h)2

)
. (9)
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If we know the frequency of the EPIRB signal as seen by the satellite at B,
denoted by frB, αb is

αb = cos−1

(
frB − ft

fd

)
,

where ft is the transmit frequency, fd = vs/λ0 is the Doppler shift along the
path of travel of the satellite, and λ0 is the wavelength of the EPIRB signal.
We already calculated the angular velocity of the satellite ωs, thus Θb is given
by ωsT , where T is the time the satellite needs to travel from A to B.

Finally, by using (1), (2), and (3) we get

R2
a = (Re + h − Rp)2 + R2

e − R2
p

or

Ra =
√(

(Re + h)2 − 2Rp(Re + h) + R2
e

)
.

Now, after all the rigorous math, we know how to calculate the range between
the crash site and the satellite when at A, that is when it crosses that latitude
line of the crash site. It remains to be shown how one can calculate the longitude
with this information.

Let us start by giving some insight into the geometry of the new problem.
Figure 4 shows the cross section of the planet Earth along the −76◦ longitude
line. The point A in this figure is equivalent to the point A in Figure 3. Thus,
when the satellite is at point A it crosses the latitude of the crash site.

If the range between the satellite at point A and the crash site is Ra, the
possible locations of the crash site are at points where a sphere with the center
in A and radius Ra intersects the surface of the planet Earth. More exactly,
since we know the latitude of the crash site is 25.455◦, the location of the crash
site must be at the intersection of the above mentioned sphere and the 25.455◦

latitude line on the Earth’s surface.
Let us now define the three dimensional coordinate system like shown in

Figure 5. Clearly, the 25.455◦ latitude line is a circle that lies in the x− y plane
at z = 0 and is defined as

x2 + y2 = R2
e1, (10)

where Re1 is the radius of the Earth along the 25.455◦ latitude line and is equal
to Re · sin(90◦ − 25.455◦).
The sphere, in this coordinate system, is defined as

(x − (Re1 + hx))2 + y2 + (z − hz)2 = R2
a, (11)

where hx = h ·cos(25.455◦) and hz = h ·sin(25.455◦). We determine where these
two curves intersect by solving the system of equations defined by (10) and (11)
at z = 0. If we subtract (11) from (10) we immediately get the solution

xs =
R2

e1 − R2
a + h2

z + (Re1 + hx)2

2(Re1 + hx)
.
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Figure 4: The cross section of the Earth along the −76◦ longitude line.

Figure 6 shows what we have just done. The sphere at z = 0 is a circle with
an origin at x = Re1 + hx and radius hx. Thus, we have determined where this
circle and (10) intersect.

Actually, we see that they intersect at two distinct locations and both of
them could potentially be a location of the crash site. One has to check both
and decide which makes more sense.

The offset of the crash site with respect to the satellite’s longitude is repre-
sented by the angle β in Figure 6. To get β we first determine the y-coordinate
of the two intersections by plugging xs in (10). Now β is given by

β = tan−1 |ys|
xs

and the two possible longitudes of the crash site are

l1 = −76◦ + β

and
l2 = −76◦ − β.

In our calculations we choose the point B (see Figure 3) to be at time 704.9
seconds, that is 266 seconds after the satellite crosses point A. At point B the
satellite receives the frequency 405991810 Hz.

With these data β results to 3.155◦ and the two possible locations are
(25.455◦,−72.845◦) and (25.455◦,−79.155◦). There are no islands in the prox-
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Figure 5: The coordinate system.

Figure 6: The longitude.

imity of the first location, while the second one is just beside the island Bimini
in the Bahamas.
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