```
%Source code Produced by David Zhang
%Do not reproduce or copy without permission
%DZHANG43@GATECH.EDU
%07/25/2013
%Georgia Tech
%This code solves when to Launch
% launch into Venus orbit and meet with Venus
% then orbit Venus until the landing date
%rocket speed?
clear all
close all
%Physical constants
G=6.672e-20; %km^3/(kg*s^2). Universal gravitation constant
%G=6.672e-20; %km^3/(kg*s^2). Universal gravitation constant
m_sun=1.98e30; % kg. mass of Sun
m_ven=4.867e24;% kg. mass of Venus.
mú_sun=G*m_sun; %km^3/s^2. Kepler's constant
mu_ven=G*m_ven;
Radius_ven=12104/2; %km. Radius of Venus.
% Rp=108e6; %Perigee of Transfer Oribt
% Ra=146e6; %Apogee of the Transfer Oribt, also the perihelion of Earth
around Sun
Rp=108e6; %Perigee of Transfer Oribt, average Venus distance to Sun
Ra=149.6e6; %Apogee of the Transfer Oribt, average Earth distance to
Sun
TO_eccentricity=(Ra-Rp)/(Ra+Rp); %eccentricity of the transfer orbit
that spacecraft uses to rendzvous with venus.
a=(Rp+Ra)/2;
T=sqrt(4*pi^2*a^3/mu_sun);
T_days=T/60/60/24;
tx_angle_max=67; %in degree. maximum El angle measured from Z-axis the
antenna on the lander can go to get out of Venus atmosphere.
TO_travel_days=T_days/2; %Important days. Transfer Orbit (TO) travel
days=146.23 days. The Russians used about 4 months!! So our number is
reasonable
Venus_orbital_const=0.6152; %%ration of rotation period of
Venus to Earth around the SUn
Earth_orbital_period=365; %days
Venus_orbital_period=Venus_orbital_const*Earth_orbital_period;
%rotation period of Venus around the SUn
Venus_daily_deg=360/Venus_orbital_period; %number of degrees that
Venus travels per day
Earth_daily_deg=360/Earth_orbital_period; %number of degrees that
Earth travels per day
tolerance=2*Venus_daily_deg; %degree. Used in
```

future_angle_to_future_date_func. This gives flexibility when we are looking for $\overline{\text { the }}$ days to reach the approximate desired angle. If to be exact, it may take a long long time.
\%tolerance=3
Venus_TO_deg=TO_travel_days*Venus_daily_deg; \%number of degrees Venus has travelled during $T O$ period
\%Where is Earth relative to Venus?? When in time will they be in these \%positions? Then we have solved when we launch need to launch.

Venus_to_Earth_Launch_day_deg=Venus_TO_deg-180; \%54.4459 degress. this is the angle between Earth and Venus on the day of Spacecraft launch

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
%write a program that given
%1. today's Venus and Earth relative position
%2. the known distance between Venus and Earth and
%3. the angle of line 1 and 2. where line 1 is from Sun to Venus. Line
2 is from Sun to earth
%We can determine on which day will Venus and Earth fall into these
%positions
```

\%Venus and Earth relative positions
\%ON Jun 30, the distance from Venus to Earth is 1.504AU
\%1AU=149,597,871 km
$\mathrm{AU}=149597871$; $\% \mathrm{~km}$
ven_to_ear_initial=1.504*AU;
ven_to_sun=108e6; $\% \mathrm{~km}$. venus to sun distance
ear_to_sun=149.6e6; \%km. earth to sun distance
\%from Law of Sine: http://en.wikipedia.org/wiki/Triangle
a=ear_to_sun;
b=ven_to_sun;
c=ven_to_ear_initial;
current_ven_to_ear_angle=acosd((a^2+b^2-c^2)/(2*a*b)); \%deg. 120.8676.
This is the angle between Venus and Earth on Jun 30.
[launch_date,
wait_to_launch_days]=future_angle_to_future_date_func(current_ven_to_ea
r_anḡle, '06/3"̄/2013', Venus̄_daily_dēg, Earth_daīly_deg, 360-
Venus_to_Earth_Launch_day_deg, tolerance); \%Important days
launch_date
$\% \frac{0}{\circ} \%$
\% \% \% \%
\%When the space craft rendezvous with Venus, Earth, spacecraft, and
Venus have
\%travelled for TO_travel_days

```
Venus_to_Earth_on_rendezvous_day_deg=Venus_TO_deg-
TO_trave\overline{l_days*Earth_daily_deg; %the angle between Earth and Venus on}\\mp@code{\}=\overline{e}
the Rendezvous day.
date_of_rendezvous=future_date_func(launch_date,
floor(TO_travel_days)); %important day
date_of_rendezvous
max_line_of_sight_deg=position_to_angle_func(tx_angle_max);
[land_date,
wait_to_land_days]=future_angle_to_future_date_func(Venus_to_Earth_on_r
ende\overline{z}vous_day_deg, date_o\overline{f}_rende\overline{zvous, venus_däily_deg,}
Earth_daily_dēg, 360-max__line_of_sight_deg, \overline{tolerance); %Important days}
land_date
wait_to_land_days; %# of days between rendezvous and land
%Assume the spacecraft position relative to the landsite at the
rendezvous
%point is the same as the day of landing. So the spacecraft roation
%period*an integer=wait_to_land_days.
%let's name the integer as craft_rot_divide
craft_rot_divide=1000;
wait_\overleftarrow{to_lānd_sec=wait_to_land_days*24*60*60;}
T_craft=-wait_to_land_\overline{sec}/craf\overline{t}_rot_divide; %rotational
period of spacecraft around Venus
craft_rot_radius=((mu_ven*(T_craft^2)/(4*pi^2)))^(1/3); %the distance
from spacecraft roation orbit around Venus to the center of Venus
craft_rot_altitude=craft_rot_radius-Radius_ven %km. The altitude of
the spacecraft relative to Venus. Earth GEO altitude is 6378kM
%Mars Landing craft initial landing speed is 13000 miles/hr =5.8km/sec
%Mars atomsphere is }100\mathrm{ times thinner than earth.
%Earth atomsphere thickness: 96.56km or 60 miles
%Venus atomsphere thickness: 250km
%Assume landing speed is 10km/sec
land_speed=10;
time_to_land=craft_rot_altitude/land_speed; %in seconds
time_to_land_min=time_to_land/60 - %about 25 minutes from
15079 km altitude.
```


$\% \%$

 ㅇ% \% \%\%When do we land? This is solved by finding out when the Venus and Earth in \%in line of sight of each other.

```
voyage_days=TO_travel_days+wait_to_land_days
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%David Zhang
%07/01/2013
%Georgia Tech
%Given the input (current angle, current date, Venus_daily_deg,
Earth_daily_deg, needed_angle)
%find output: future date
%Venus and Earth relative positions
%ON Jun 30, the distance from Venus to Earth is 1.504AU
%1AU=149,597,871 km
function [future_date,
days]=future_angle_to_future_date_func(current_angle, current_date,
Venus_daily_deg, Earth_daily_deg, final_angle, tolerance)
%current_angle: the angle between Earth and Venus. If current_angle>=0,
Earth is ahead of Venus
%final_angle: the angle between Earth and Venus. If final_angle>=0,
Earth is ahead of Venus
Earth_init_angle=0; %let's align Earth on X-axis.
Venus_init_angle=current_angle;
days=0;
Venus_angle=Venus_init_angle;
Earth_angle=Earth_init_angle;
%tolerance=2*Venus_daily_deg; %degree. This gives flexibility when we
are looking for the days. If to be exact, it may take a long long time.
while (~((final_angle-tolerance)<(Venus_angle-Earth_angle) &&
(Venus_angle-Earth_angle)<= final_angle+tolerance))
    days=days+1;
    Venus_angle=Venus_angle+Venus_daily_deg;
    Earth_angle=Earth_angle+Earth_daily_deg;
    if (Venus_angle>=360)
            Venus_angle=Venus_angle-360;
    end
    if (Earth_angle>=360)
        Earth_angle=Earth_angle-360;
    end
end
future_date=future_date_func(current_date, days);
```

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%David Zhang
%07/01/2013
%Georgia Tech
%date calculator
%adds current date with number of given days to give the future
corresponding date.
function future_date=future_date_func(current_date, days)
R = addtodate(datenum(current_date), days, 'day');
future_date=datestr(R);
```


$\% \frac{\%}{\circ} \%$

```
%David Zhang
%07/01/2013
%Georgia Tech
%Given the distance between Venus and Earth
%This code gives the angle (theta) between them
% {
Resources:
http://wiki.answers.com/Q/What_is_the_distance_of_all_planets_from_the__
sun
http://www.windows2universe.org/our_solar_system/planets_orbits_table.h
tml
http://www.windows2universe.org/sun/statistics.html
http://www.fourmilab.ch/cgi-bin/Solar
Venus Diameter: 12104 km
Earth Diameter: 12753 km
Sun Diameter: 1.4 million km
Average Venus to Sun Distance: }108\mathrm{ million km
Center to Center from V to S:
Average Earth to Sun Distance: 149.6 million km
Center to Center from E to S:
% }
function theta=position_to_angle_func(tx_angle_max)
dia_sun=1.4e6; %km
dia_ear=12753; %km
dia_ven=12104; %km
ven_to_sun=108e6; %venus to sun distance
ear_to_sun=149.6e6; %earth to sun distance
Rv=(dia_sun/2)+ven_to_sun; % distance from center of Sun to the
```

```
landing site: Sun_to_Venus Distance+Venus Radius
Re=ear_to_sun; % distance from center of Sun to center of Earth
%Rv=108; % distance from center of Sun to the landing site: radius
of Sun+Sun_to_Venus Distance+Venus Diameter
%Re=150; % distance from center of Sun to center of Earth: radius of
sun+sun to Earth+Earth Radius
%tx_angle_max=67; %in degree. maximum El angle measured from z-axis the
antenna on the lander can go to get out of Venus atmosphere.
%solve for angle formed between Rv and Re=theta
%Re=hypotenuse
%A=side of the right angle facing theta
%B+Rv=the other side
%A^2=Re^2-(Rv+B)^2
%A_solution 1=[-b+sqrt(b^2-4*a*c)]/2*a
%A_solution 2=[-b-sqrt(b^2-4*a*c)]/2*a
station_ang=90-tx_angle_max; %the angle between A and the line from
earth station to the lander.
a=1+(tand(station_ang))^2;
b=2*Rv*tand(station_ang);
c=Rv^2-Re^2;
A_1=[-b+sqrt(b^2-4*a*c)]/(2*a);
A_2=[-b-sqrt(b^2-4*a*C)]/(2*a);
if A_1>=0;
    A=A_1;
elseif A_2>=0
    A=A_\overline{2;}
end
A
theta=asind(A/Re); %in degree. angle formed between Rv and Re
beta=2*theta+90; %in degree. line of sight. the range that Earth
station can see the the antenna on the lander
%The max distance between Venus and Earth when the probe is at 67
degree
%will be
max_dis_between_Earth_Venus=A/sind(tx_angle_max)
```

